SEARCH

SEARCH BY CITATION

References

  • Astarie-Dequeker, C., N'Diaye, E.N., Le Cabec, V., Rittig, M.G., Prandi, J., and Maridonneau-Parini, I. (1999) The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67: 469477.
  • Astarie-Dequeker, C., Carreno, S., Cougoule, C., and Maridonneau-Parini, I. (2002) The protein tyrosine kinase Hck is located on lysosomal vesicles that are physically and functionally distinct from CD63-positive lysosomes in human macrophages. J Cell Sci 115: 8189.
  • Astarie-Dequeker, C., Le Guyader, L., Malaga, W., Seaphanh, F.K., Chalut, C., Lopez, A., and Guilhot, C. (2009) Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 5: e1000289.
  • Bardarov, S., Bardarov, S., Jr, Pavelka, M.S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., et al. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 30073017.
  • Brodin, P., Poquet, Y., Levillain, F., Peguillet, I., Larrouy-Maumus, G., Gilleron, M., et al. (2010) High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 6: e1001100.
  • Brozna, J.P., Horan, M., Rademacher, J.M., Pabst, K.M., and Pabst, M.J. (1991) Monocyte responses to sulfatide from Mycobacterium tuberculosis: inhibition of priming for enhanced release of superoxide, associated with increased secretion of interleukin-1 and tumor necrosis factor alpha, and altered protein phosphorylation. Infect Immun 59: 25422548.
  • Camacho, L.R., Ensergueix, D., Perez, E., Gicquel, B., and Guilhot, C. (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34: 257267.
  • Camacho, L.R., Constant, P., Raynaud, C., Laneelle, M.A., Triccas, J.A., Gicquel, B., et al. (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276: 1984519854.
  • Chambers, H.F., Moreau, D., Yajko, D., Miick, C., Wagner, C., Hackbarth, C., et al. (1995) Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother 39: 26202624.
  • Chesne-Seck, M.L., Barilone, N., Boudou, F., Gonzalo Asensio, J., Kolattukudy, P.E., Martin, C., et al. (2008) A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bacteriol 190: 13291334.
  • Cole, S.T. (1999) Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett 452: 710.
  • Constant, P., Perez, E., Malaga, W., Laneelle, M.A., Saurel, O., Daffe, M., and Guilhot, C. (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277: 3814838158.
  • Converse, S.E., Mougous, J.D., Leavell, M.D., Leary, J.A., Bertozzi, C.R., and Cox, J.S. (2003) MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100: 61216126.
  • Cox, J.S., Chen, B., McNeil, M., and Jacobs, W.R., Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 7983.
  • Daniel, J., Deb, C., Dubey, V.S., Sirakova, T.D., Abomoelak, B., Morbidoni, H.R., and Kolattukudy, P.E. (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186: 50175030.
  • Domenech, P., and Reed, M.B. (2009) Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. Microbiology 155: 35323543.
  • Drose, S., and Altendorf, K. (1997) Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 200: 18.
  • Dubey, V.S., Sirakova, T.D., and Kolattukudy, P.E. (2002) Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol 45: 14511459.
  • Etienne, G., Malaga, W., Laval, F., Lemassu, A., Guilhot, C., and Daffe, M. (2009) Identification of the polyketide synthase involved in the biosynthesis of the surface-exposed lipooligosaccharides in mycobacteria. J Bacteriol 191: 26132621.
  • Forrellad, M.A., Klepp, L.I., Gioffre, A., Sabio, Y.G.J., Morbidoni, H.R., Santangelo Mde, L., et al. (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4: 366.
  • Geurtsen, J., Chedammi, S., Mesters, J., Cot, M., Driessen, N.N., Sambou, T., et al. (2009) Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol 183: 52215231.
  • Gilmore, S.A., Schelle, M.W., Holsclaw, C.M., Leigh, C.D., Jain, M., Cox, J.S., et al. (2012) Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages. ACS Chem Biol 7: 863870.
  • Gonzalo Asensio, J., Maia, C., Ferrer, N.L., Barilone, N., Laval, F., Soto, C.Y., et al. (2006) The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281: 13131316.
  • Goren, M.B., D'Arcy Hart, P., Young, M.R., and Armstrong, J.A. (1976) Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 73: 25102514.
  • Guilhot, C., and Daffe, M. (2008) Polyketides and polyketide-containing glycolipids of Mycobacterium tuberculoisis: structure, biosynthesis and biological activities. In Hanbook of Tuberculosis Molecular Biology and Biochemistry. Kaufmann, S.H.E. , and Rubin, E. (eds). Weinheim: Wiley-VCH Verlag GmbH & Co., pp. 2151.
  • Hartman, J.L., Garvik, B., and Hartwell, L. (2001) Principles for the buffering of genetic variation. Science 291: 10011004.
  • Husseini, H., and Elberg, S. (1952) Cellular reactions to phthienoic acid and related branch ed-chain acids. Am Rev Tuberc 65: 655672.
  • Jain, M., Petzold, C.J., Schelle, M.W., Leavell, M.D., Mougous, J.D., Bertozzi, C.R., et al. (2007) Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci USA 104: 51335138.
  • Kirksey, M.A., Tischler, A.D., Simeone, R., Hisert, K.B., Uplekar, S., Guilhot, C., and McKinney, J.D. (2011) Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity. Infect Immun 79: 28292838.
  • Kvitko, B.H., Park, D.H., Velasquez, A.C., Wei, C.F., Russell, A.B., Martin, G.B., et al. (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5: e1000388.
  • Lee, K.S., Dubey, V.S., Kolattukudy, P.E., Song, C.H., Shin, A.R., Jung, S.B., et al. (2007) Diacyltrehalose of Mycobacterium tuberculosis inhibits lipopolysaccharide- and mycobacteria-induced proinflammatory cytokine production in human monocytic cells. FEMS Microbiol Lett 267: 121128.
  • Lee, W., Vanderven, B.C., Fahey, R.J., and Russell, D.G. (2013) Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288: 67886800.
  • Lukacs, G.L., Rotstein, O.D., and Grinstein, S. (1990) Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages. J Biol Chem 265: 2109921107.
  • Malaga, W., Perez, E., and Guilhot, C. (2003) Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219: 261268.
  • Mohanty, D., Sankaranarayanan, R., and Gokhale, R.S. (2011) Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis. Tuberculosis (Edinb) 91: 448455.
  • Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 5563.
  • N'Diaye, E.N., Darzacq, X., Astarie-Dequeker, C., Daffe, M., Calafat, J., and Maridonneau-Parini, I. (1998) Fusion of azurophil granules with phagosomes and activation of the tyrosine kinase Hck are specifically inhibited during phagocytosis of mycobacteria by human neutrophils. J Immunol 161: 49834991.
  • Neyrolles, O., and Guilhot, C. (2011) Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb) 91: 187195.
  • O'Connor, T.J., Adepoju, Y., Boyd, D., and Isberg, R.R. (2011) Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci USA 108: 1473314740.
  • O'Connor, T.J., Boyd, D., Dorer, M.S., and Isberg, R.R. (2012) Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338: 14401444.
  • Pabst, M.J., Gross, J.M., Brozna, J.P., and Goren, M.B. (1988) Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis. J Immunol 140: 634640.
  • Pelicic, V., Jackson, M., Reyrat, J.M., Jacobs, W.R., Jr, Gicquel, B., and Guilhot, C. (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94: 1095510960.
  • Pethe, K., Swenson, D.L., Alonso, S., Anderson, J., Wang, C., and Russell, D.G. (2004) Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101: 1364213647.
  • Rhee, K.Y., de Carvalho, L.P., Bryk, R., Ehrt, S., Marrero, J., Park, S.W., et al. (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19: 307314.
  • Rousseau, C., Neyrolles, O., Bordat, Y., Giroux, S., Sirakova, T.D., Prevost, M.C., et al. (2003a) Deficiency in mycolipenate- and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells. Cell Microbiol 5: 405415.
  • Rousseau, C., Turner, O.C., Rush, E., Bordat, Y., Sirakova, T.D., Kolattukudy, P.E., et al. (2003b) Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect Immun 71: 46844690.
  • Saavedra, R., Segura, E., Leyva, R., Esparza, L.A., and Lopez-Marin, L.M. (2001) Mycobacterial di-O-acyl-trehalose inhibits mitogen- and antigen-induced proliferation of murine T cells in vitro. Clin Diagn Lab Immunol 8: 10811088.
  • Sani, M., Houben, E.N., Geurtsen, J., Pierson, J., de Punder, K., van Zon, M., et al. (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6: e1000794.
  • Stewart, G.R., Patel, J., Robertson, B.D., Rae, A., and Young, D.B. (2005) Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog 1: 269278.
  • Stover, C.K., Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennett, L.T., et al. (1991) New use of BCG for recombinant vaccines. Nature 351: 456460.
  • Upton, A.M., and McKinney, J.D. (2007) Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Microbiology 153: 39733982.
  • Vandal, O.H., Pierini, L.M., Schnappinger, D., Nathan, C.F., and Ehrt, S. (2008) A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14: 849854.
  • Welin, A., Raffetseder, J., Eklund, D., Stendahl, O., and Lerm, M. (2011) Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. J Innate Immun 3: 508518.
  • WHO (2012) Global Tuberculosis Report 2012. World Health Organisation, pp. 189.
  • Zhang, L., Goren, M.B., Holzer, T.J., and Andersen, B.R. (1988) Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect Immun 56: 28762883.