SEARCH

SEARCH BY CITATION

References

  • Adams, J.H., Sim, B.K., Dolan, S.A., Fang, X., Kaslow, D.C., and Miller, L.H. (1992) A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA 89: 70857089.
  • Armistead, J.S., Wilson, I.B., van Kuppevelt, T.H., and Dinglasan, R.R. (2011) A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands. Biochem J 438: 475483.
  • Arredondo, S.A., Cai, M., Takayama, Y., MacDonald, N.J., Anderson, D.E., Aravind, L., et al. (2012) Structure of the Plasmodium 6-cysteine s48/45 domain. Proc Natl Acad Sci USA 109: 66926697.
  • Bai, T., Becker, M., Gupta, A., Strike, P., Murphy, V.J., Anders, R.F., and Batchelor, A.H. (2005) Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci USA 102: 1273612741.
  • Bargieri, D.Y., Andenmatten, N., Lagal, V., Thiberge, S., Whitelaw, J.A., Tardieux, I., et al. (2013) Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Commun 4: 2552.
  • Bartholdson, S.J., Bustamante, L.Y., Crosnier, C., Johnson, S., Lea, S., Rayner, J.C., and Wright, G.J. (2012) Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. PLoS Pathog 8: e1003031.
  • Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., et al. (1995) Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82: 7787.
  • Batchelor, J.D., Zahm, J.A., and Tolia, N.H. (2011) Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat Struct Mol Biol 18: 908914.
  • Batchelor, J.D., Malpede, B.M., Omattage, N.S., DeKoster, G.T., Henzler-Wildman, K.A., and Tolia, N.H. (2014) Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS Pathog 10: e1003869.
  • Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T.W., et al. (2006) A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 281: 51975208.
  • Baum, J., Gilberger, T.W., Frischknecht, F., and Meissner, M. (2008) Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol 24: 557563.
  • Blair, P.L., Kappe, S.H., Maciel, J.E., Balu, B., and Adams, J.H. (2002) Plasmodium falciparum MAEBL is a unique member of the ebl family. Mol Biochem Parasitol 122: 3544.
  • Bosch, J., Buscaglia, C.A., Krumm, B., Ingason, B.P., Lucas, R., Roach, C., et al. (2007) Aldolase provides an unusual binding site for thrombospondin-related anonymous protein in the invasion machinery of the malaria parasite. Proc Natl Acad Sci USA 104: 70157020.
  • Brown, A., Turner, L., Christoffersen, S., Andrews, K.A., Szestak, T., Zhao, Y., et al. (2013) Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1. J Biol Chem 288: 59926003.
  • Buscaglia, C.A., Coppens, I., Hol, W.G., and Nussenzweig, V. (2003) Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. Mol Biol Cell 14: 49474957.
  • Camus, D., and Hadley, T.J. (1985) A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230: 553556.
  • Cao, J., Kaneko, O., Thongkukiatkul, A., Tachibana, M., Otsuki, H., Gao, Q., et al. (2009) Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int 58: 2935.
  • Chen, E., Paing, M.M., Salinas, N., Sim, B.K., and Tolia, N.H. (2013) Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175. PLoS Pathog 9: e1003390.
  • Chen, Q., Fernandez, V., Sundstrom, A., Schlichtherle, M., Datta, S., Hagblom, P., and Wahlgren, M. (1998) Developmental selection of var gene expression in Plasmodium falciparum. Nature 394: 392395.
  • Chitarra, V., Holm, I., Bentley, G.A., Petres, S., and Longacre, S. (1999) The crystal structure of C-terminal merozoite surface protein 1 at 1.8 A resolution, a highly protective malaria vaccine candidate. Mol Cell 3: 457464.
  • Coppi, A., Pinzon-Ortiz, C., Hutter, C., and Sinnis, P. (2005) The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med 201: 2733.
  • Coppi, A., Tewari, R., Bishop, J.R., Bennett, B.L., Lawrence, R., Esko, J.D., et al. (2007) Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe 2: 316327.
  • Coppi, A., Natarajan, R., Pradel, G., Bennett, B.L., James, E.R., Roggero, M.A., et al. (2011) The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med 208: 341356.
  • Corti, D., and Lanzavecchia, A. (2013) Broadly neutralizing antiviral antibodies. Annu Rev Immunol 31: 705742.
  • Cowman, A.F., Berry, D., and Baum, J. (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198: 961971.
  • Crosnier, C., Bustamante, L.Y., Bartholdson, S.J., Bei, A.K., Theron, M., Uchikawa, M., et al. (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480: 534537.
  • van Dijk, M.R., Janse, C.J., Thompson, J., Waters, A.P., Braks, J.A., Dodemont, H.J., et al. (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104: 153164.
  • van Dijk, M.R., van Schaijk, B.C., Khan, S.M., van Dooren, M.W., Ramesar, J., Kaczanowski, S., et al. (2010) Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility. PLoS Pathog 6: e1000853.
  • Doud, M.B., Koksal, A.C., Mi, L.Z., Song, G., Lu, C., and Springer, T.A. (2012) Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci USA 109: 78177822.
  • Fu, J., Saenz, F.E., Reed, M.B., Balu, B., Singh, N., Blair, P.L., et al. (2005) Targeted disruption of maebl in Plasmodium falciparum. Mol Biochem Parasitol 141: 113117.
  • Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498511.
  • Ghosh, A.K., and Jacobs-Lorena, M. (2009) Plasmodium sporozoite invasion of the mosquito salivary gland. Curr Opin Microbiol 12: 394400.
  • Ghosh, A.K., Devenport, M., Jethwaney, D., Kalume, D.E., Pandey, A., Anderson, V.E., et al. (2009) Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the Anopheles saglin proteins. PLoS Pathog 5: e1000265.
  • Godson, G.N., Ellis, J., Svec, P., Schlesinger, D.H., and Nussenzweig, V. (1983) Identification and chemical synthesis of a tandemly repeated immunogenic region of Plasmodium knowlesi circumsporozoite protein. Nature 305: 2933.
  • Goel, V.K., Li, X., Chen, H., Liu, S.C., Chishti, A.H., and Oh, S.S. (2003) Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sci USA 100: 51645169.
  • Gruber, A., Gunalan, K., Ramalingam, J.K., Manimekalai, M.S., Gruber, G., and Preiser, P.R. (2011) Structural characterization of the erythrocyte binding domain of the reticulocyte binding protein homologue family of Plasmodium yoelii. Infect Immun 79: 28802888.
  • Heddini, A., Chen, Q., Obiero, J., Kai, O., Fernandez, V., Marsh, K., et al. (2001) Binding of Plasmodium falciparum-infected erythrocytes to soluble platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): frequent recognition by clinical isolates. Am J Trop Med Hyg 65: 4751.
  • Hester, J., Chan, E.R., Menard, D., Mercereau-Puijalon, O., Barnwell, J., Zimmerman, P.A., and Serre, D. (2013) De novo assembly of a field isolate genome reveals novel plasmodium vivax erythrocyte invasion genes. PLoS Negl Trop Dis 7: e2569.
  • Higgins, M.K. (2008) The structure of a chondroitin sulfate-binding domain important in placental malaria. J Biol Chem 283: 2184221846.
  • Hodder, A.N., Crewther, P.E., Matthew, M.L., Reid, G.E., Moritz, R.L., Simpson, R.J., and Anders, R.F. (1996) The disulfide bond structure of Plasmodium apical membrane antigen-1. J Biol Chem 271: 2944629452.
  • Hodder, A.N., Czabotar, P.E., Uboldi, A.D., Clarke, O.B., Lin, C.S., Healer, J., et al. (2012) Insights into Duffy binding-like domains through the crystal structure and function of the merozoite surface protein MSPDBL2 from Plasmodium falciparum. J Biol Chem 287: 3292232939.
  • Holder, A.A., and Freeman, R.R. (1984) The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J Exp Med 160: 624629.
  • Ishino, T., Chinzei, Y., and Yuda, M. (2005) Two proteins with 6-cys motifs are required for malarial parasites to commit to infection of the hepatocyte. Mol Microbiol 58: 12641275.
  • Juillerat, A., Lewit-Bentley, A., Guillotte, M., Gangnard, S., Hessel, A., Baron, B., et al. (2011) Structure of a Plasmodium falciparum PfEMP1 rosetting domain reveals a role for the N-terminal segment in heparin-mediated rosette inhibition. Proc Natl Acad Sci USA 108: 52435248.
  • Kappe, S., Bruderer, T., Gantt, S., Fujioka, H., Nussenzweig, V., and Menard, R. (1999) Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. J Cell Biol 147: 937944.
  • Kappe, S.H., Buscaglia, C.A., and Nussenzweig, V. (2004) Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol 20: 2959.
  • Kariu, T., Yuda, M., Yano, K., and Chinzei, Y. (2002) MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med 195: 13171323.
  • Kauth, C.W., Epp, C., Bujard, H., and Lutz, R. (2003) The merozoite surface protein 1 complex of human malaria parasite Plasmodium falciparum: interactions and arrangements of subunits. J Biol Chem 278: 2225722264.
  • Khunrae, P., Philip, J.M., Bull, D.R., and Higgins, M.K. (2009) Structural comparison of two CSPG-binding DBL domains from the VAR2CSA protein important in malaria during pregnancy. J Mol Biol 393: 202213.
  • Klein, M.M., Gittis, A.G., Su, H.P., Makobongo, M.O., Moore, J.M., Singh, S., et al. (2008) The cysteine-rich interdomain region from the highly variable plasmodium falciparum erythrocyte membrane protein-1 exhibits a conserved structure. PLoS Pathog 4: e1000147.
  • Klotz, F.W., Orlandi, P.A., Reuter, G., Cohen, S.J., Haynes, J.D., Schauer, R., et al. (1992) Binding of Plasmodium falciparum 175-kilodalton erythrocyte binding antigen and invasion of murine erythrocytes requires N-acetylneuraminic acid but not its O-acetylated form. Mol Biochem Parasitol 51: 4954.
  • Lamarque, M., Besteiro, S., Papoin, J., Roques, M., Vulliez-Le Normand, B., Morlon-Guyot, J., et al. (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 7: e1001276.
  • Leech, J.H., Barnwell, J.W., Miller, L.H., and Howard, R.J. (1984) Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med 159: 15671575.
  • Lin, D.H., Malpede, B.M., Batchelor, J.D., and Tolia, N.H. (2012) Crystal and solution structures of Plasmodium falciparum erythrocyte-binding antigen 140 reveal determinants of receptor specificity during erythrocyte invasion. J Biol Chem 287: 3683036836.
  • Lobo, C.A., Rodriguez, M., Reid, M., and Lustigman, S. (2003) Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101: 46284631.
  • Mahairaki, V., Voyatzi, T., Siden-Kiamos, I., and Louis, C. (2005) The Anopheles gambiae gamma1 laminin directly binds the Plasmodium berghei circumsporozoite- and TRAP-related protein (CTRP). Mol Biochem Parasitol 140: 119121.
  • Maier, A.G., Baum, J., Smith, B., Conway, D.J., and Cowman, A.F. (2009) Polymorphisms in erythrocyte binding antigens 140 and 181 affect function and binding but not receptor specificity in Plasmodium falciparum. Infect Immun 77: 16891699.
  • Malpede, B.M., Lin, D.H., and Tolia, N.H. (2013) Molecular basis for sialic acid-dependent receptor recognition by the Plasmodium falciparum invasion protein erythrocyte-binding antigen-140/BAEBL. J Biol Chem 288: 1240612415.
  • Mayer, D.C., Mu, J.B., Feng, X., Su, X.Z., and Miller, L.H. (2002) Polymorphism in a Plasmodium falciparum erythrocyte-binding ligand changes its receptor specificity. J Exp Med 196: 15231528.
  • Menard, D., Chan, E.R., Benedet, C., Ratsimbasoa, A., Kim, S., Chim, P., et al. (2013) Whole genome sequencing of field isolates reveals a common duplication of the duffy binding protein gene in malagasy plasmodium vivax strains. PLoS Negl Trop Dis 7: e2489.
  • Morgan, W.D., Birdsall, B., Frenkiel, T.A., Gradwell, M.G., Burghaus, P.A., Syed, S.E., et al. (1999) Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1. J Mol Biol 289: 113122.
  • Mota, M.M., Pradel, G., Vanderberg, J.P., Hafalla, J.C., Frevert, U., Nussenzweig, R.S., et al. (2001) Migration of Plasmodium sporozoites through cells before infection. Science 291: 141144.
  • Ntumngia, F.B., and Adams, J.H. (2012) Design and immunogenicity of a novel synthetic antigen based on the ligand domain of the Plasmodium vivax duffy binding protein. Clin Vaccine Immunol 19: 3036.
  • Orlandi, P.A., Klotz, F.W., and Haynes, J.D. (1992) A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2–3)Gal- sequences of glycophorin A. J Cell Biol 116: 901909.
  • Pizarro, J.C., Chitarra, V., Verger, D., Holm, I., Petres, S., Dartevelle, S., et al. (2003) Crystal structure of a Fab complex formed with PfMSP1-19, the C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum: a malaria vaccine candidate. J Mol Biol 328: 10911103.
  • Pizarro, J.C., Vulliez-Le Normand, B., Chesne-Seck, M.L., Collins, C.R., Withers-Martinez, C., Hackett, F., et al. (2005) Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science 308: 408411.
  • Plassmeyer, M.L., Reiter, K., Shimp, R.L., Jr, Kotova, S., Smith, P.D., Hurt, D.E., et al. (2009) Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem 284: 2695126963.
  • Remarque, E.J., Faber, B.W., Kocken, C.H., and Thomas, A.W. (2008) Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol 24: 7484.
  • Rowe, J.A., Claessens, A., Corrigan, R.A., and Arman, M. (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11: e16.
  • Rupp, I., Sologub, L., Williamson, K.C., Scheuermayer, M., Reininger, L., Doerig, C., et al. (2011) Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut. Cell Res 21: 683696.
  • Salinas, N.D., and Tolia, N.H. (2014) A quantitative assay for binding and inhibition of Plasmodium falciparum erythrocyte binding antigen 175 reveals high affinity binding depends on both DBL domains. Protein Expr Purif 94: 188194
  • Sampath, S., Carrico, C., Janes, J., Gurumoorthy, S., Gibson, C., Melcher, M., et al. (2013) Glycan masking of Plasmodium vivax Duffy binding protein for probing protein binding function and vaccine development. PLoS Pathog 9: e1003420.
  • Sanders, P.R., Gilson, P.R., Cantin, G.T., Greenbaum, D.C., Nebl, T., Carucci, D.J., et al. (2005) Distinct protein classes including novel merozoite surface antigens in Raft-like membranes of Plasmodium falciparum. J Biol Chem 280: 4016940176.
  • Saxena, A.K., Singh, K., Su, H.P., Klein, M.M., Stowers, A.W., Saul, A.J., et al. (2006) The essential mosquito-stage P25 and P28 proteins from Plasmodium form tile-like triangular prisms. Nat Struct Mol Biol 13: 9091.
  • Saxena, A.K., Wu, Y., and Garboczi, D.N. (2007) Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines. Eukaryot Cell 6: 12601265.
  • Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., et al. (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J 17: 54185426.
  • Siden-Kiamos, I., Vlachou, D., Margos, G., Beetsma, A., Waters, A.P., Sinden, R.E., and Louis, C. (2000) Distinct roles for pbs21 and pbs25 in the in vitro ookinete to oocyst transformation of Plasmodium berghei. J Cell Sci 113 (Part 19): 34193426.
  • Sidjanski, S.P., Vanderberg, J.P., and Sinnis, P. (1997) Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol Biochem Parasitol 90: 3341.
  • Silvie, O., Franetich, J.F., Charrin, S., Mueller, M.S., Siau, A., Bodescot, M., et al. (2004) A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Biol Chem 279: 94909496.
  • Sim, B.K., Orlandi, P.A., Haynes, J.D., Klotz, F.W., Carter, J.M., Camus, D., et al. (1990) Primary structure of the 175 K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol 111: 18771884.
  • Sim, B.K., Chitnis, C.E., Wasniowska, K., Hadley, T.J., and Miller, L.H. (1994) Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264: 19411944.
  • Singh, S.K., Hora, R., Belrhali, H., Chitnis, C.E., and Sharma, A. (2006) Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439: 741744.
  • Sinnis, P., Coppi, A., Toida, T., Toyoda, H., Kinoshita-Toyoda, A., Xie, J., et al. (2007) Mosquito heparan sulfate and its potential role in malaria infection and transmission. J Biol Chem 282: 2537625384.
  • Smith, J.D., Chitnis, C.E., Craig, A.G., Roberts, D.J., Hudson-Taylor, D.E., Peterson, D.S., et al. (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101110.
  • Smith, J.D., Subramanian, G., Gamain, B., Baruch, D.I., and Miller, L.H. (2000) Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol 110: 293310.
  • Song, G., Koksal, A.C., Lu, C., and Springer, T.A. (2012) Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc Natl Acad Sci USA 109: 2142021425.
  • Srinivasan, P., Beatty, W.L., Diouf, A., Herrera, R., Ambroggio, X., Moch, J.K., et al. (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci USA 108: 1327513280.
  • Srivastava, A., Gangnard, S., Round, A., Dechavanne, S., Juillerat, A., Raynal, B., et al. (2010) Full-length extracellular region of the var2CSA variant of PfEMP1 is required for specific, high-affinity binding to CSA. Proc Natl Acad Sci USA 107: 48844889.
  • Su, X.Z., Heatwole, V.M., Wertheimer, S.P., Guinet, F., Herrfeldt, J.A., Peterson, D.S., et al. (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89100.
  • Sultan, A.A., Thathy, V., Frevert, U., Robson, K.J., Crisanti, A., Nussenzweig, V., et al. (1997) TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell 90: 511522.
  • Taechalertpaisarn, T., Crosnier, C., Bartholdson, S.J., Hodder, A.N., Thompson, J., Bustamante, L.Y., et al. (2012) Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41. PLoS ONE 7: e41937.
  • Tolia, N.H., Enemark, E.J., Sim, B.K., and Joshua-Tor, L. (2005) Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122: 183193.
  • Tomas, A.M., Margos, G., Dimopoulos, G., van Lin, L.H., de Koning-Ward, T.F., Sinha, R., et al. (2001) P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J 20: 39753983.
  • Tonkin, M.L., Arredondo, S.A., Loveless, B.C., Serpa, J.J., Makepeace, K.A., Sundar, N., et al. (2013) Structural and biochemical characterization of Plasmodium falciparum 12 (Pf12) reveals a unique interdomain organization and the potential for an antiparallel arrangement with Pf41. J Biol Chem 288: 1280512817.
  • Tordai, H., Banyai, L., and Patthy, L. (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461: 6367.
  • Triglia, T., Healer, J., Caruana, S.R., Hodder, A.N., Anders, R.F., Crabb, B.S., and Cowman, A.F. (2000) Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 38: 706718.
  • Uchime, O., Herrera, R., Reiter, K., Kotova, S., Shimp, R.L., Jr, Miura, K., et al. (2012) Analysis of the conformation and function of the Plasmodium falciparum merozoite proteins MTRAP and PTRAMP. Eukaryot Cell 11: 615625.
  • Vigan-Womas, I., Guillotte, M., Juillerat, A., Hessel, A., Raynal, B., England, P., et al. (2012) Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting. PLoS Pathog 8: e1002781.
  • Vlachou, D., Lycett, G., Siden-Kiamos, I., Blass, C., Sinden, R.E., and Louis, C. (2001) Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Mol Biochem Parasitol 112: 229237.
  • Vulliez-Le Normand, B., Tonkin, M.L., Lamarque, M.H., Langer, S., Hoos, S., Roques, M., et al. (2012) Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 8: e1002755.
  • Wanaguru, M., Crosnier, C., Johnson, S., Rayner, J.C., and Wright, G.J. (2013) Biochemical analysis of the plasmodium falciparum erythrocyte-binding antigen-175 (EBA175)-glycophorin-A interaction: implications for vaccine design. J Biol Chem 288: 3210632117.
  • Wang, Q., Fujioka, H., and Nussenzweig, V. (2005) Mutational analysis of the GPI-anchor addition sequence from the circumsporozoite protein of Plasmodium. Cell Microbiol 7: 16161626.
  • Wengelnik, K., Spaccapelo, R., Naitza, S., Robson, K.J., Janse, C.J., Bistoni, F., et al. (1999) The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J 18: 51955204.
  • Withers-Martinez, C., Haire, L.F., Hackett, F., Walker, P.A., Howell, S.A., Smerdon, S.J., et al. (2008) Malarial EBA-175 region VI crystallographic structure reveals a KIX-like binding interface. J Mol Biol 375: 773781.
  • Yuda, M., Sakaida, H., and Chinzei, Y. (1999a) Targeted disruption of the plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J Exp Med 190: 17111716.
  • Yuda, M., Sawai, T., and Chinzei, Y. (1999b) Structure and expression of an adhesive protein-like molecule of mosquito invasive-stage malarial parasite. J Exp Med 189: 19471952.