SEARCH

SEARCH BY CITATION

References

  • Adl, S.M., Leander, B.S., Simpson, A.G., Archibald, J.M., Anderson, O.R., Bass, D., et al. (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56: 684689.
  • Agop-Nersesian, C., Naissant, B., Ben Rached, F., Rauch, M., Kretzschmar, A., Thiberge, S., et al. (2009) Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 5: e1000270.
  • Agop-Nersesian, C., Egarter, S., Langsley, G., Foth, B.J., Ferguson, D.J., and Meissner, M. (2010) Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog 6: e1001029.
  • Andenmatten, N., Egarter, S., Jackson, A.J., Jullien, N., Herman, J.P., and Meissner, M. (2013) Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 10: 125127.
  • Anderson-White, B., Beck, J.R., Chen, C.T., Meissner, M., Bradley, P.J., and Gubbels, M.J. (2013) Cytoskeleton assembly in Toxoplasma gondii cell division. Int Rev Cell Mol Biol 298: 131.
  • Anderson-White, B.R., Ivey, F.D., Cheng, K., Szatanek, T., Lorestani, A., Beckers, C.J., et al. (2011) A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol 13: 1831.
  • Bannister, L.H., and Mitchell, G.H. (1995) The role of the cytoskeleton in Plasmodium falciparum merozoite biology: an electron-microscopic view. Ann Trop Med Parasitol 89: 105111.
  • Bannister, L.H., Hopkins, J.M., Fowler, R.E., Krishna, S., and Mitchell, G.H. (2000) Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts. Parasitology 121 (Part 3): 273287.
  • Bargieri, D.Y., Andenmatten, N., Lagal, V., Thiberge, S., Whitelaw, J.A., Tardieux, I., et al. (2013) Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion. Nat Commun 4: 2552.
  • Barkhuff, W.D., Gilk, S.D., Whitmarsh, R., Tilley, L.D., Hunter, C., and Ward, G.E. (2011) Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness. PLoS ONE 6: e23977.
  • Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T.W., et al. (2006) A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 281: 51975208.
  • Beck, J.R., Rodriguez-Fernandez, I.A., de Leon, J.C., Huynh, M.H., Carruthers, V.B., Morrissette, N.S., and Bradley, P.J. (2010) A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS Pathog 6: e1001094.
  • Bergman, L.W., Kaiser, K., Fujioka, H., Coppens, I., Daly, T.M., Fox, S., et al. (2003) Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J Cell Sci 116: 3949.
  • Billker, O., Lourido, S., and Sibley, L.D. (2009) Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 5: 612622.
  • Bosch, J., Paige, M.H., Vaidya, A.B., Bergman, L.W., and Hol, W.G. (2012) Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J Struct Biol 178: 6173.
  • Bullen, H.E., Tonkin, C.J., O'Donnell, R.A., Tham, W.H., Papenfuss, A.T., Gould, S., et al. (2009) A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 284: 2535325363.
  • Carter, V., Nacer, A.M., Underhill, A., Sinden, R.E., and Hurd, H. (2007) Minimum requirements for ookinete to oocyst transformation in Plasmodium. Int J Parasitol 37: 12211232.
  • Coceres, V.M., Alonso, A.M., Alomar, M.L., and Corvi, M.M. (2012) Rabbit antibodies against Toxoplasma Hsp20 are able to reduce parasite invasion and gliding motility in Toxoplasma gondii and parasite invasion in Neospora caninum. Exp Parasitol 132: 274281.
  • Coppens, I., and Joiner, K.A. (2003) Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol Biol Cell 14: 38043820.
  • Dearnley, M.K., Yeoman, J.A., Hanssen, E., Kenny, S., Turnbull, L., Whitchurch, C.B., et al. (2012) Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes. J Cell Sci 125: 20532063.
  • Del Carmen, M.G., Mondragon, M., Gonzalez, S., and Mondragon, R. (2009) Induction and regulation of conoid extrusion in Toxoplasma gondii. Cell Microbiol 11: 967982.
  • Dessens, J.T., Beetsma, A.L., Dimopoulos, G., Wengelnik, K., Crisanti, A., Kafatos, F.C., and Sinden, R.E. (1999) CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 18: 62216227.
  • Dobrowolski, J.M., and Sibley, L.D. (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933939.
  • Dubremetz, J.F., Torpier, G., Maurois, P., Prensier, G., and Sinden, R. (1979) Structure de la pellicule du sporozoite de Plasmodium yoelii etude par cryofracture. C R Acad Sci Paris 288: 3.
  • Dzierszinski, F., Nishi, M., Ouko, L., and Roos, D.S. (2004) Dynamics of Toxoplasma gondii differentiation. Eukaryot Cell 3: 9921003.
  • Egarter, S., Andenmatten, N., Jackson, A.J., Pall, G., Black, J.A., Ferguson, D.J., et al. (2014) The Toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS ONE.
  • Farrow, R.E., Green, J., Katsimitsoulia, Z., Taylor, W.R., Holder, A.A., and Molloy, J.E. (2011) The mechanism of erythrocyte invasion by the malarial parasite, Plasmodium falciparum. Semin Cell Dev Biol 22: 953960.
  • Fauquenoy, S., Hovasse, A., Sloves, P.J., Morelle, W., Dilezitoko Alayi, T., Slomianny, C., et al. (2011) Unusual N-glycan structures required for trafficking Toxoplasma gondii GAP50 to the inner membrane complex regulate host cell entry through parasite motility. Mol Cell Proteomics 10: M111 008953.
  • Ferguson, D.J., Sahoo, N., Pinches, R.A., Bumstead, J.M., Tomley, F.M., and Gubbels, M.J. (2008) MORN1 has a conserved role in asexual and sexual development across the apicomplexa. Eukaryot Cell 7: 698711.
  • Francia, M.E., and Striepen, B. (2014) Cell division in apicomplexan parasites. Nat Rev Microbiol 12: 125136.
  • Frenal, K., Polonais, V., Marq, J.B., Stratmann, R., Limenitakis, J., and Soldati-Favre, D. (2010) Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 8: 343357.
  • Fung, C., Beck, J.R., Robertson, S.D., Gubbels, M.J., and Bradley, P.J. (2012) Toxoplasma ISP4 is a central IMC sub-compartment protein whose localization depends on palmitoylation but not myristoylation. Mol Biochem Parasitol 184: 99108.
  • Gaskins, E., Gilk, S., DeVore, N., Mann, T., Ward, G., and Beckers, C. (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165: 383393.
  • Gerald, N., Mahajan, B., and Kumar, S. (2011) Mitosis in the human malaria parasite Plasmodium falciparum. Eukaryot Cell 10: 474482.
  • Gilk, S.D., Raviv, Y., Hu, K., Murray, J.M., Beckers, C.J., and Ward, G.E. (2006) Identification of PhIL1, a novel cytoskeletal protein of the Toxoplasma gondii pellicle, through photosensitized labeling with 5-[125I]iodonaphthalene-1-azide. Eukaryot Cell 5: 16221634.
  • Gilk, S.D., Gaskins, E., Ward, G.E., and Beckers, C.J. (2009) GAP45 phosphorylation controls assembly of the Toxoplasma myosin XIV complex. Eukaryot Cell 8: 190196.
  • Gordon, J.L., Beatty, W.L., and Sibley, L.D. (2008) A novel actin-related protein is associated with daughter cell formation in Toxoplasma gondii. Eukaryot Cell 7: 15001512.
  • Gordon, J.L., Buguliskis, J.S., Buske, P.J., and Sibley, L.D. (2010) Actin-like protein 1 (ALP1) is a component of dynamic, high molecular weight complexes in Toxoplasma gondii. Cytoskeleton (Hoboken) 67: 2331.
  • Gould, S.B., Tham, W.H., Cowman, A.F., McFadden, G.I., and Waller, R.F. (2008) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25: 12191230.
  • Gubbels, M.J., Wieffer, M., and Striepen, B. (2004) Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa. Mol Biochem Parasitol 137: 99110.
  • Gubbels, M.J., Vaishnava, S., Boot, N., Dubremetz, J.F., and Striepen, B. (2006) A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119: 22362245.
  • Guttery, D.S., Poulin, B., Ferguson, D.J., Szoor, B., Wickstead, B., Carroll, P.L., et al. (2012) A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog 8: e1002948.
  • Heaslip, A.T., Dzierszinski, F., Stein, B., and Hu, K. (2010) TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS Pathog 6: e1000754.
  • Herm-Gotz, A., Weiss, S., Stratmann, R., Fujita-Becker, S., Ruff, C., Meyhofer, E., et al. (2002) Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J 21: 21492158.
  • Holder, A.A., Mohd Ridzuan, M.A., and Green, J.L. (2012) Calcium dependent protein kinase 1 and calcium fluxes in the malaria parasite. Microbes Infect 14: 825830.
  • Hu, G., Cabrera, A., Kono, M., Mok, S., Chaal, B.K., Haase, S., et al. (2010) Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol 28: 9198.
  • Hu, K., Mann, T., Striepen, B., Beckers, C.J., Roos, D.S., and Murray, J.M. (2002) Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 13: 593606.
  • Hu, K., Johnson, J., Florens, L., Fraunholz, M., Suravajjala, S., DiLullo, C., et al. (2006) Cytoskeletal components of an invasion machine – the apical complex of Toxoplasma gondii. PLoS Pathog 2: e13.
  • Huynh, M.H., and Carruthers, V.B. (2006) Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2: e84.
  • Jackson, A.J., Clucas, C., Mamczur, N.J., Ferguson, D.J., and Meissner, M. (2013) Toxoplasma gondii Syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic 14: 11661181.
  • Jayabalasingham, B., Bano, N., and Coppens, I. (2010) Metamorphosis of the malaria parasite in the liver is associated with organelle clearance. Cell Res 20: 10431059.
  • Jewett, T.J., and Sibley, L.D. (2003) Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 11: 885894.
  • Johnson, T.M., Rajfur, Z., Jacobson, K., and Beckers, C.J. (2007) Immobilization of the type XIV myosin complex in Toxoplasma gondii. Mol Biol Cell 18: 30393046.
  • Jones, M.L., Kitson, E.L., and Rayner, J.C. (2006) Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Mol Biochem Parasitol 147: 7484.
  • Kaiser, K., Camargo, N., and Kappe, S.H. (2003) Transformation of sporozoites into early exoerythrocytic malaria parasites does not require host cells. J Exp Med 197: 10451050.
  • Khater, E.I., Sinden, R.E., and Dessens, J.T. (2004) A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. J Cell Biol 167: 425432.
  • Kono, M., Herrmann, S., Loughran, N.B., Cabrera, A., Engelberg, K., Lehmann, C., et al. (2012) Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol Biol Evol 29: 21132132.
  • Kudryashev, M., Lepper, S., Stanway, R., Bohn, S., Baumeister, W., Cyrklaff, M., and Frischknecht, F. (2010) Positioning of large organelles by a membrane- associated cytoskeleton in Plasmodium sporozoites. Cell Microbiol 12: 362371.
  • Kumar, N., Aikawa, M., and Grotendorst, C. (1985) Plasmodium gallinaceum: critical role for microtubules in the transformation of zygotes into ookinetes. Exp Parasitol 59: 239247.
  • Ladenburger, E.M., Sehring, I.M., Korn, I., and Plattner, H. (2009) Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol Cell Biol 29: 36053622.
  • Leung, J.M., Rould, M.A., Konradt, C., Hunter, C.A., and Ward, G.E. (2014) Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay. PLoS ONE 9: e85763.
  • Lige, B., Romano, J.D., Bandaru, V.V., Ehrenman, K., Levitskaya, J., Sampels, V., et al. (2011) Deficiency of a Niemann-Pick, type C1-related protein in toxoplasma is associated with multiple lipidoses and increased pathogenicity. PLoS Pathog 7: e1002410.
  • Lorestani, A., Sheiner, L., Yang, K., Robertson, S.D., Sahoo, N., Brooks, C.F., et al. (2010) A Toxoplasma MORN1 null mutant undergoes repeated divisions but is defective in basal assembly, apicoplast division and cytokinesis. PLoS ONE 5: e12302.
  • Lorestani, A., Ivey, F.D., Thirugnanam, S., Busby, M.A., Marth, G.T., Cheeseman, I.M., and Gubbels, M.J. (2012) Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN1. Cytoskeleton (Hoboken) 69: 10691085.
  • McNamara, C.W., Lee, M.C., Lim, C.S., Lim, S.H., Roland, J., Nagle, A., et al. (2013) Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504: 248253.
  • Mann, T., and Beckers, C. (2001) Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115: 257268.
  • Mann, T., Gaskins, E., and Beckers, C. (2002) Proteolytic processing of TgIMC1 during maturation of the membrane skeleton of Toxoplasma gondii. J Biol Chem 277: 4124041246.
  • Meis, J.F., Verhave, J.P., Jap, P.H., and Meuwissen, J.H. (1985) Transformation of sporozoites of Plasmodium berghei into exoerythrocytic forms in the liver of its mammalian host. Cell Tissue Res 241: 353360.
  • Meszoely, C.A., Erbe, E.F., Steere, R.L., Pacheco, N.D., and Beaudoin, R.L. (1982) Plasmodium berghei: architectural analysis by freeze-fracturing of the intraoocyst sporozoite's pellicular system. Exp Parasitol 53: 229241.
  • de Miguel, N., Lebrun, M., Heaslip, A., Hu, K., Beckers, C.J., Matrajt, M., et al. (2008) Toxoplasma gondii Hsp20 is a stripe-arranged chaperone-like protein associated with the outer leaflet of the inner membrane complex. Biol Cell 100: 479489.
  • Montagna, G.N., Buscaglia, C.A., Munter, S., Goosmann, C., Frischknecht, F., Brinkmann, V., and Matuschewski, K. (2012a) Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 287: 24102422.
  • Montagna, G.N., Matuschewski, K., and Buscaglia, C.A. (2012b) Plasmodium sporozoite motility: an update. Front Biosci (Landmark Ed) 17: 726744.
  • Morrissette, N.S., and Sibley, L.D. (2002) Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66: 2138, table of contents.
  • Morrissette, N.S., Murray, J.M., and Roos, D.S. (1997) Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110 (Part 1): 3542.
  • Nebl, T., Prieto, J.H., Kapp, E., Smith, B.J., Williams, M.J., Yates, J.R., 3rd, et al. (2011) Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 7: e1002222.
  • Opitz, C., and Soldati, D. (2002) ‘The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45: 597604.
  • Philip, N., Vaikkinen, H.J., Tetley, L., and Waters, A.P. (2012) A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLoS ONE 7: e44617.
  • Pieperhoff, M.S., Schmitt, M., Ferguson, D.J., and Meissner, M. (2013) The role of clathrin in post-Golgi trafficking in Toxoplasma gondii. PLoS ONE 8: e77620.
  • Pinder, J., Fowler, R., Bannister, L., Dluzewski, A., and Mitchell, G.H. (2000) Motile systems in malaria merozoites: how is the red blood cell invaded? Parasitol Today 16: 240245.
  • Porchet, E., and Torpier, G. (1977) [Freeze fracture study of Toxoplasma and Sarcocystis infective stages] (author's transl.). Z Parasitenkd 54: 101124.
  • Poulin, B., Patzewitz, E.M., Brady, D., Silvie, O., Wright, M.H., Ferguson, D.J., et al. (2013) Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite. Biol Open 2: 11601170.
  • Raibaud, A., Lupetti, P., Paul, R.E., Mercati, D., Brey, P.T., Sinden, R.E., et al. (2001) Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in the alveolar membranes. J Struct Biol 135: 4757.
  • Rayavara, K., Rajapandi, T., Wollenberg, K., Kabat, J., Fischer, E.R., and Desai, S.A. (2009) A complex of three related membrane proteins is conserved on malarial merozoites. Mol Biochem Parasitol 167: 135143.
  • Rees-Channer, R.R., Martin, S.R., Green, J.L., Bowyer, P.W., Grainger, M., Molloy, J.E., and Holder, A.A. (2006) Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites. Mol Biochem Parasitol 149: 113116.
  • Ridzuan, M.A., Moon, R.W., Knuepfer, E., Black, S., Holder, A.A., and Green, J.L. (2012) Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development. PLoS ONE 7: e33845.
  • Sebastian, S., Brochet, M., Collins, M.O., Schwach, F., Jones, M.L., Goulding, D., et al. (2012) A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe 12: 919.
  • Sheffield, H.G., and Melton, M.L. (1968) The fine structure and reproduction of Toxoplasma gondii. J Parasitol 54: 209226.
  • Sinden, R.E. (1982) Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology 84: 111.
  • Sinden, R.E. (1983) The cell biology of sexual development in plasmodium. Parasitology 86 (Part 4): 728.
  • Sinden, R.E., Canning, E.U., Bray, R.S., and Smalley, M.E. (1978) Gametocyte and gamete development in Plasmodium falciparum. Proc R Soc Lond B Biol Sci 201: 375399.
  • Sultan, A.A., Thathy, V., Frevert, U., Robson, K.J., Crisanti, A., Nussenzweig, V., et al. (1997) TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell 90: 511522.
  • Thomas, D.C., Ahmed, A., Gilberger, T.W., and Sharma, P. (2012) Regulation of Plasmodium falciparum glideosome associated protein 45 (PfGAP45) phosphorylation. PLoS ONE 7: e35855.
  • Tomavo, S., Slomianny, C., Meissner, M., and Carruthers, V.B. (2013) Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog 9: e1003629.
  • Tremp, A.Z., and Dessens, J.T. (2011) Malaria IMC1 membrane skeleton proteins operate autonomously and participate in motility independently of cell shape. J Biol Chem 286: 53835391.
  • Tremp, A.Z., Khater, E.I., and Dessens, J.T. (2008) IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes. J Biol Chem 283: 2760427611.
  • Tremp, A.Z., Carter, V., Saeed, S., and Dessens, J.T. (2013) Morphogenesis of Plasmodium zoites is uncoupled from tensile strength. Mol Microbiol 89: 552564.
  • Wichroski, M.J., Melton, J.A., Donahue, C.G., Tweten, R.K., and Ward, G.E. (2002) Clostridium septicum alpha-toxin is active against the parasitic protozoan Toxoplasma gondii and targets members of the SAG family of glycosylphosphatidylinositol-anchored surface proteins. Infect Immun 70: 43534361.
  • Yeoman, J.A., Hanssen, E., Maier, A.G., Klonis, N., Maco, B., Baum, J., et al. (2011) Tracking Glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum. Eukaryot Cell 10: 556564.