• Amyloid-β aggregation;
  • Antioxidant action;
  • Astrogliosis;
  • Estrogen receptor-β binding;
  • Neuroinflammation;
  • Oxidative and nitrosative stresses;
  • Silymarin


Silymarin, a C25 containing flavonoid from the plant Silybum marianum, has been the gold standard drug to treat liver disorders associated with alcohol consumption, acute and chronic viral hepatitis, and toxin-induced hepatic failures since its discovery in 1960. Apart from the hepatoprotective nature, which is mainly due to its antioxidant and tissue regenerative properties, Silymarin has recently been reported to be a putative neuroprotective agent against many neurologic diseases including Alzheimer's and Parkinson's diseases, and cerebral ischemia. Although the underlying neuroprotective mechanism of Silymarin is believed to be due to its capacity to inhibit oxidative stress in the brain, it also confers additional advantages by influencing pathways such as β-amyloid aggregation, inflammatory mechanisms, cellular apoptotic machinery, and estrogenic receptor mediation. In this review, we have elucidated the possible neuroprotective effects of Silymarin and the underlying molecular events, and suggested future courses of action for its acceptance as a CNS drug for the treatment of neurodegenerative diseases.