SEARCH

SEARCH BY CITATION

References

  • AgenaRisk. (2012). Agena Ltd, Available at: http://www.agenarisk.com. Accessed September, 2012.
  • Aitken, C. G. G., T., Connolly, A., Gammerman, G., Zhang, D., Bailey, R., Gordon and R., Oldfield (1995). Bayesian belief networks with an application in specific case analysis. Computational Learning and Probabilistic Reasoning. A. Gammerman, John Wiley and Sons Ltd.
  • Aitken, C., & Taroni, F. (2004). Statistics and the evaluation of evidence (2nd ed.). Hoboken, NJ: Wiley.
  • Ashley, K. D. (1990). Modeling legal argument: Reasoning with cases and hypotheticals. Cambridge, MA: The MIT Press/Bradford Books.
  • Balding, D. J., & Donnelly, P. (1994). Prosecutor’s fallacy and DNA evidence. Criminal Law Review, October, 711722.
  • Bankowski, Z., White, I., & Hahn, U. (1995). Informatics and the foundations of legal reasoning. Dordrecht the Netherlands: Kluwer Academic Publishers.
  • Bex, F., van Koppen, P., Prakken, H., & Verheij, B. (2010). A hybrid formal theory of arguments, stories and criminal evidence. Artificial Intelligence and Law, 18, 123152.
  • Bovens, L., & Hartmann, S. (2003). Bayesian epistemology. Oxford, England: Oxford University Press.
  • Casscells, W., Schoenberger, A., & Graboys, T. B. (1978). Interpretation by physicians of clinical laboratory results. New England Journal of Medicine, 299, 9991001.
  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 5581.
  • Christie, A. (19532002). Witness for the prosecution. London: Harper Collins Publishers Ltd.
  • Corner, A., Hahn, U., & Oaksford, M. (2011). The psychological mechanism of the slippery slope argument. Journal of Memory and Language, 64, 133152.
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavorial & Brain Sciences., 24, 87185.
  • Crown Court Benchbook (2010). Judicial Studies Board.
  • Dawid, A. P. (2002). Bayes’s theorem and weighing evidence by juries. In R. Swinburne (Ed.), Bayes’s theorem (pp. 7190). Proceedings of the British Academy. Oxford, England: Oxford University Press.
  • Dawid, A. P., & Evett, I. W. (1997). Using a graphical model to assist the evaluation of complicated patterns of evidence. Journal of Forensic Sciences, 42, 226231.
  • Dror, I. E., & Charlton, D. (2006). Why experts make errors. Journal of Forensic Identification, 56(4), 600616.
  • Dror, I. E., & Hampikian, G. (2011). Subjectivity and bias in forensic DNA mixture interpretation. Science & Justice, 51(4), 204208.
  • Edwards, W. (1991). Influence diagrams, Bayesian imperialism, and the collins case: An appeal to reason. Cardozo Law Review, 13, 10251079.
  • Ericsson, K., Charness, N., Feltovich, P., & Hoffman, R. (2006). Cambridge handbook of expertise and expert performance. Cambridge, UK: Cambridge University Press.
  • Ericsson, K., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211245.
  • Evett, I. W., & Weir, B. S. (1998). Interpreting DNA evidence: Statistical genetics for forensic scientists. Sunderland, MA: Sinauer Associates Inc.
  • Faigman, D. L., & Baglioni, A. J. (1988). Bayes’ theorem in the trial process. Law and Human Behavior, 12, 117.
  • Fenton, N. E. (2011). Science and law: Improve statistics in court. Nature, 479, 3637.
  • Fenton, N., & Neil, M. (2010). Comparing risks of alternative medical diagnosis using Bayesian arguments. Journal of Biomedical Informatics, 43, 485495.
  • Fenton, N., & Neil, M. (2011). Avoiding legal fallacies in practice using Bayesian networks. Australian Journal of Legal Philosophy, 36, 114150.
  • Fenton, N. E., & Neil, M. (2012). On limiting the use of Bayes in presenting forensic evidence, Extended draft, Available at: https://www.eecs.qmul.ac.uk/~norman/papers/likelihood_ratio.pdf. Accessed 24 September 2012.
  • Fenton, N., Neil, M., & Lagnado, D., (2011). Modelling mutually exclusive causes in Bayesian networks, Extended draft, Available at: http://www.eecs.qmul.ac.uk/~norman/papers/mutual_IEEE_format_version.pdf. Accessed 24 September 2012.
  • Fienberg, S. E., & Schervish, M. J. (1986). Relevance of Bayesian inference for the presentation of statistical evidence and for legal decisionmaking, the symposium. Boston University Law Review, 66, 771798.
  • Finkelstein, M. O., & Levin, B. A. (2001). Statistics for lawyers. New York: Springer.
  • Forrest, A. R. (2003). Sally Clark – A lesson for us all. Science & Justice, 43, 6364.
  • Friedman, R. (1987). Route analysis of credibility and hearsay. The Yale Law Journal, 96(4), 668742.
  • Gobet, F., Lane, P., Croker, S., Cheng, P., Jones, G., Oliver, I., & Pine, J. (2001). Chunking mechanisms in human learning. Trends in Cognitive Science, 5, 236243.
  • Good, P. I. (2001). Applying statistics in the courtroom: A new approach for attorneys and expert witnesses. Boca Raton, FL: CRC Press.
  • Gordon, T. F., & Walton, D. (2011). A formal model of legal proof standards and burdens. In F. van Emeren, B. Garssen, J. A. Blair, & G. R. Mitchell (Eds.), 7th Conference on Argumentation of the International Society for the Study of Argumentation (ISSA 2010) (pp. 644655). Amsterdam: Sic Sac.
  • Grabmair, M., Gordon, T. F., & Walton, D. (2010). Probabilistic semantics for the carneades argument model using Bayesian networks. In P. Baroni, F. Cerutti, M. Giacomin, & G. R. Simari (Eds.), Computational Models of Argument: Proceedings of COMMA 2010 (pp. 255266). Amsterdam: IOS Press.
  • Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), The Cambridge handbook of computational cognitive modelling (pp. 59100). Cambridge, England: Cambridge University Press.
  • Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induction. Psychological Review, 116, 661716.
  • Hahn, U., Harris, A. J. L., & Corner, A. (2009). Argument content and argument source: An exploration. Informal Logic, 29, 337367.
  • Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114, 704732.
  • Hahn, U., Oaksford, M., & Harris, A. J. L. (in press). Testimony and argument: A Bayesian perspective. In F. Zenker (Ed.), Bayesian argumentation. New York: Springer Library.
  • Halford, G. S., Cowan, N., & Andrews, G. (2007). Separating cognitive capacity from knowledge: A new hypothesis. Trends in Cognitive Science, 11, 236242.
  • Harris, A. J. L., & Hahn, U. (2009). Bayesian rationality in evaluating multiple testimonies: Incorporating the role of coherence. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 13661372.
  • Hepler, A. B., Dawid, A. P., & Leucari, V. (2007). Object-oriented graphical representations of complex patterns of evidence. Law, Probability & Risk, 6, 275293.
  • Hugin, A. S. (2011). Hugin Expert. Available at: http://www.hugin.com. Accessed 24 September 2012.
  • Huygen, P. E. M. (2002). Use of Bayesian Belief Networks in legal reasoning. In 17th BILETA Annual Conference. Amsterdam: Free University.
  • Jackson, G., Jones, S., Booth, G., Champod, C., & Evett, I. W. (2006). The nature of forensic science opinion—a possible framework to guide thinking and practice in investigations and in court proceedings. Science and Justice, 46, 3344.
  • Jarvstad, A., & Hahn, U. (2011). Source reliability and the conjunction fallacy. Cognitive Science, 35, 682711.
  • Jowett, C. (2001). Lies, damned lies, and DNA statistics: DNA match testing. Bayes’ theorem, and the criminal courts. Medical Science & Law, 41, 194205.
  • Kadane, J. B., & Schum, D. A. (1996). A probabilistic analysis of the Sacco and Vanzetti evidence. New York: John Wiley.
  • Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
  • Keppens, J. (2011). On extracting arguments from Bayesian network representations of evidential reasoning. In Proceedings of the 13th International Conference on Artificial Intelligence and Law (pp. 141150).
  • Keppens, J., Shen, Q., & Price, C. (2011). Compositional Bayesian modelling for computation of evidence collection strategies. Applied Intelligence, 35, 134161.
  • Keppens, J., & Zeleznikow, J. (2002). On the role of model-based reasoning in decision support in crime investigation. In Proceedings of the 3rd International Conference on Law and Technology (pp. 7783).
  • Keppens, J., & Zeleznikow, J. (2003). A model based reasoning approach for generating plausible crime scenarios from evidence. In Proceedings of the 9th International Conference on Artificial Intelligence and Law (pp. 5159).
  • Krynski, T. R., & Tenenbaum, J. B. (2007). The role of causality in judgment under uncertainty. Journal of Experimental Psychology: General, 136, 430450.
  • Lagnado, D. (2011). Thinking about evidence. In P. Dawid, W. Twining, & M. Vasilaki (Eds.), Evidence, inference and enquiry. Proceedings of the British Academy/171, Oxford: Oxford University Press.
  • Lagnado, D. A., Fenton, N., & Neil, M. (2012). Legal idioms: a framework for evidential reasoning. Argument and Computation 118.
  • Lagnado, D. A., & Harvey, N. (2008). The impact of discredited evidence. Psychonomic Bulletin & Review, 15, 11661173.
  • Lagnado, D. A., Waldmann, M. A., Hagmayer, Y., & Sloman, S. A. (2007). Beyond covariation. Cues to causal structure. In A. Gopnik & L. E. Schultz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 154172). New York: Oxford University Press.
  • Matthews, R. (1997). Tipping the scales of justice. New Scientist, 2112, 1819.
  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.
  • Neil, M., Fenton, N., & Nielsen, L. (2000). Building large-scale Bayesian Networks. Knowledge Engineering Review, 15, 257284.
  • Neil, M., Tailor, M., & Marquez, D. (2007). Inference in Bayesian networks using dynamic discretisation. Statistics and Computing, 17(3), 219–233, 2007.
  • Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford, England: Oxford University Press.
  • Oaksford, M., & Chater, N. (Eds.) (2010). Cognition and conditionals: Probability and logic in human thinking. Oxford, England: Oxford University Press.
  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Palo Alto, CA: Morgan Kaufmann.
  • Pearl, J. (2011). The algorithmization of counterfactuals. Annals for Mathematics and Artificial Intelligence, 61(1), 2939.
  • Pennington, N., & Hastie, R. (1986). Evidence evaluation in complex decision making. Journal of Personality and Social Psychology, 51, 242258.
  • Pennington, N., & Hastie, R. (1992). Explaining the evidence: Test of the story model for juror decision making. Journal of Personality and Social Psychology, 62, 189206.
  • Prakken, H. (1997). Logical Tools for Modelling Legal Argument: A Study of Defeasible Reasoning in Law, Law and Philosophy Library, 32, Dordrecht: Kluwer Boston/London.
  • R. v. George (2007). EWCA Crim 2722.
  • Redmayne, M. (1995). DNA evidence, probability and the courts. Criminal Law Review, 464, 464482.
  • Roberts, P., & Zuckerman, A. (2010). Criminal evidence (2nd ed.). Oxford, England: Oxford University Press.
  • Robertson, B., & Vignaux, T. (1995). Interpreting evidence: Evaluating forensic science in the courtroom. Chichester: John Wiley.
  • Robertson, B., & Vignaux, T. (1997). Bayes’ theorem in the court of appeal. The Criminal Lawyer, January, 45.
  • Schum, D. A. (2001). The evidential foundations of probabilistic reasoning. Evanston, IL: Northwestern University Press.
  • Schum, D. A., & Martin, A. W. (1982). Formal and empirical research on cascaded inference in jurisprudence. Law & Society Review, 17, 105151.
  • Sloman, S. A. (2005). Causal models. Cambridge, MA: Oxford University Press.
  • Sloman, S. A., & Lagnado, D. A. (2005). Do we do? Cognitive Science, 29, 539.
  • Steyvers, M., & Griffiths, T. L. (2008). Rational analysis as a link between human memory and information retrieval. In N. Chater & M. Oaksford (Eds.), The probabilistic mind: Prospects from rational models of cognition (pp. 327347). Oxford: Oxford University Press.
  • Taroni, F., Aitken, C., Garbolino, P., & Biedermann, A. (2006). Bayesian networks and probabilistic inference in forensic science. Chichester: John Wiley.
  • Thompson, W. C. (2009). Painting the target around the matching profile: The Texas sharpshooter fallacy in forensic DNA interpretation. Law, Probability and Risk, 8(3), 257276.
  • Tillers, P. (2011). Trial by Mathematics – Reconsidered. Cardozo Legal Studies Research Paper No. 333.
  • Tillers, P., & Green, E. (1988). Probability and inference in the law of evidence the uses and limits of Bayesianism. Dordrecht The Netherlands: Kluwer Academic Publishers.
  • Walton, D. (2008). Witness testimony evidence: Argumentation, artificial intelligence, and law. Cambridge, UK: Cambridge University Press.
  • Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge, England: Cambridge University Press.
  • Wigmore, J. H. (1913). The problem of proof. Illinois Law Journal, 8(2), 77103.
  • Zukerman, I. (2010). Arguing with a Bayesian intelligence. In R. Dechter, H. Geffner, & J. Y. Halpern (Eds.), Heuristics, probability and causality: A tribute to Judea Pearl (pp. 271292). London: College Publications.
  • Zukerman, I., & George, S. (2005). A probabilistic approach for argument interpretation. User Modelling and User-Adapted Interaction, 15(1–2), 553.