SEARCH

SEARCH BY CITATION

References

  • Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. New York: Norton.
  • Adrian, E. D., & Zotterman, Y. (1926). The impulses produced by sensory nerve-endings. Part 2. The response of a single end-organ. Journal of Physiology, 61(2), 151171.
  • Alle, H., Roth, A., & Geiger, J. R. P. (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325, 14051408.
  • Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford, England: Oxford University Press.
  • Aydede, M. (1997). Language of thought: The connectionist contribution. Minds and Machines, 7(1), 57101.
  • Baddeley, R., Hancock, P., & Földiák, P. (Eds.) (2000). Information theory and the brain. Cambridge, England: Cambridge University Press.
  • Bahar, S. (2003). Effect of light on stochastic phase synchronization in the crayfish caudal photoreceptor. Biological Cybernetics, 89(3), 200213.
  • Bahar, S., & Moss, F. (2003). Stochastic phase synchronization in the crayfish mechanoreceptor/photoreceptor system. Chaos, 13(1), 138144.
  • Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation, 8, 11851202.
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577660.
  • Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. London: Routledge.
  • Bennett, M. R., & Kearns, J. L. (2000). Statistics of transmitter release at nerve terminals. Progress in Neurobiology, 60(6), 545606.
  • Block, N. (1978). Troubles with Functionalism. Perception and Cognition: Issues in the Foundations of Psychology. C. W. Savage. Minneapolis, University of Minnesota Press. 6, 261325.
  • Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nature Neuroscience, 2(11), 947957.
  • Boshernitzan, M. (1986). Universal formulae and universal differential equations. The Annals of Mathematics, 2nd Series, 124(2), 273291.
  • Bruno, M. S., & Kennedy, D. (1962). Spectral sensitivity of photoreceptor neurons in the sixth ganglion of the crayfish. Comparative Biochemistry and Physiology, 6, 4146.
  • Caianiello, E. R. (1961). Outline of a theory of thought processes and thinking machines. Journal of Theoretical Biology, 1(2), 204235.
  • Cannon, W. B. (1932). The wisdom of the body. New York: Norton.
  • Churchland, P. M. (2007). Neurophilosophy at work. Cambridge, MA: Cambridge University Press.
  • Churchland, P. S., Koch, C., & Sejnowski, T. J. (1990). What is computational neuroscience? In E. L. Schwartz (Ed.), Computational neuroscience (pp. 4655). Cambridge, MA: MIT Press.
  • Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.
  • Copeland, B. J. (2000). Narrow versus wide mechanism: Including a re-examination of Turing’s views on the mind-machine issue. The Journal of Philosophy, XCVI(1), 532.
  • Craver, C. F. (2006). When mechanistic models explain. Synthese, 153, 355376.
  • Craver, C. F. (2007). Explaining the brain. Oxford, England: Oxford University Press.
  • Craver, C. F. (2010). Prosthetic models. Philosophy of Science, 77(5), 840851.
  • Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.
  • Davis, M., Sigal, R., & Weyuker, E. J. (1994). Computability, complexity, and languages. Boston: Academic Press.
  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.
  • Douglass, J. K., Wilkens, L., Pantazelou, E., & Moss, F. (1993). Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365(6444), 337340.
  • Dretske, F. I. (1981). Knowledge and the flow of information. Cambridge, MA: MIT Press.
  • Dretske, F. I. (1986). Misrepresentation. In R. Bogdan (Ed.), Belief: Form, content, and function (pp. 1736). New York: Oxford University Press.
  • Dreyfus, H. L. (1979). What computers can’t do. New York: Harper & Row.
  • Duffin, R. J. (1981). Rubel’s universal differential equation. Proceedings of the National Academy of Sciences USA, 78(8 [Part 1: Physical Sciences]), 46614662.
  • Edelman, S. (2008). Computing the mind: How the mind really works. Oxford, England: Oxford University Press.
  • Elbert, T., & Rockstroh, B. (2004). Reorganization of human cerebral cortex: The range of changes following use and injury. Neuroscientist, 10(2), 129141.
  • Eliasmith, C. (2000). Is the brain analog or digital? The solution and its consequences for cognitive science. Cognitive Science Quarterly, 1(2), 147170.
  • Eliasmith, C. (2003). Moving beyond metaphors: Understanding the mind for what it is. Journal of Philosophy, 100(10), 493520.
  • Eliasmith, C. (2007). How to build a brain: From function to implementation. Synthese, 159(3), 373388.
  • Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representation and dynamics in neurobiological systems. Cambridge, MA: MIT Press.
  • Ermentrout, G. B., & Terman, D. H. (2010). Mathematical foundations of neuroscience. New York: Springer.
  • Fodor, J. A. (1965). Explanations in psychology. In M. Black (Ed.), Philosophy in America. London: Routledge and Kegan Paul.
  • Fodor, J. A. (1968). Psychological explanation. New York: Random House.
  • Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.
  • Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and Cognitive Architecture. Cognition, 28, 371.
  • Fodor, J. A. (2000). The Mind Doesn't Work That Way. Cambridge, MA: MIT Press.
  • Fodor, J. A. (2008). LOT 2: The language of thought revisited. Oxford, England: Oxford University Press.
  • Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291(5508), 15601563.
  • Fries, P., Womelsdorf, T., Oostenveld, R., & Desimone, R. (2008). The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. Journal of Neuroscience, 28(18), 48234835.
  • Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. Malden, MA: Wiley-Blackwell.
  • Garson, J. (2003). The introduction of information into neurobiology. Philosophy of Science, 70, 926936.
  • Gazzaniga, M. (Ed.) (2009). The cognitive neurosciences. Cambridge, MA: MIT Press.
  • van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, XXI, 615665.
  • Gerard, R. W. (1951). Some of the problems concerning digital notions in the nentral nervous system. Cybernetics: Circular causal and feedback mechanisms in biological and social systems. In H. V. Foerster, M. Mead & H. L. Teuber (Eds.), Transactions of the seventh conference (pp. 1157). New York: Macy Foundation.
  • Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, S342S353.
  • Globus, G. G. (1992). Towards a noncomputational cognitive neuroscience. Journal of Cognitive Neuroscience, 4(4), 299310.
  • Gollisch, T. (2009). Throwing a glance at the neural code: Rapid information transmission in the visual system. HFSP Journal, 3(1), 3646.
  • Grice, H. P. (1957). Meaning. The Philosophical Review, 66(3), 377388.
  • Grush, R. (2003). In defense of some ‘Cartesian’ assumptions concerning the brain and its operation. Biology and Philosophy, 18, 5393.
  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377442.
  • Hille, B. (2001). Ion channels of excitable membranes. Sunderland, MA: Sinauer.
  • Hogdkin, A., & Huxley, A. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. Journal of Physiology, 116, 449472.
  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA, 79, 25542558.
  • Horgan, T., & Tiensen, J. (1989). Representation without rules. Philosophical Topics, XVII(1), 2743.
  • Householder, A. S., & Landahl, H. D. (1945). Mathematical biophysics of the central nervous system. Bloomington, IN: Principia.
  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106154.
  • Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford, England: Oxford University Press.
  • Inan, M., & Crair, M. C. (2007). Development of cortical maps: Perspectives from the barrel cortex. Neuroscientist, 13(1), 4961.
  • Johansson, R. S., & Birznieks, I. (2004). First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience, 7, 170177.
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. New York: Cambridge University Press.
  • Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences USA, 107(43), 1824318250.
  • Kalat, J. W. (2008). Biological psychology. Belmont, CA: Wadsworth Publishing.
  • Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59(6), 734766.
  • Kosslyn, S. M., Thompson, W. I., & Ganis, G. (2006). The case for mental imagery. New York: Oxford University Press.
  • Lapicque, L. (2007). Quantitative investigation of electrical nerve excitation treated as polarization (N. Brunel & M. van Rossum, Trans.). Biological Cybernetics, 97, 341349. (Original work published 1907).
  • Lashley, K. S. (1958). Research Publications of the Association for Research in Nervous & Mental Disease. Cerebral organization and behavior. In F. A. Beach, D. O. Hebb, C. T. Morgan & H. V. Nissen (Eds.), The neuropsychology of Lashley; Selected papers of K. S. (pp. 529543). New York: McGraw-Hill. The Brain and Human Behavior, Proceedings of the Association for Research of Nervous and Mental Disorders, 36, 1–18. (1960) (reprint)
  • Le Bon-Jego, M., & Yuste, R. (2007). Persistently active, pacemaker-like neurons in neocortex. Frontiers in Neuroscience, 1(1), 123129.
  • Levin, J. E., & Miller, J. P. (1996). Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature, 380(6570), 165168.
  • Lin, J.-W., & Faber, D. S. (2002). Modulation of synaptic delay during synaptic plasticity. Trends in Neurosciences, 25(9), 449455.
  • Lipshitz, L., & Rubel, L. A. (1987). A differentially algebraic replacement theorem, and analog computability. Proceedings of the American Mathematical Society, 99(2), 367372.
  • London, M., Roth, A., Beeren, L., Häusser, M., & Latham, P. E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466, 123127.
  • Lucas, J. R. (1961). Minds, machines, and Gödel. Philosophy, 36, 112137.
  • Lycan, W. (1990). The continuity of levels of nature. In W. Lycan (Ed.), Mind and cognition (pp. 7796). Malden, MA: Blackwell.
  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 15031506.
  • Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies, 115, 117131.
  • Marr, D. (1982). Vision. New York: Freeman.
  • McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7, 115133.
  • Meister, M., & Berry, M. J. (1999). The neural code of the retina. Neuron, 22, 435450.
  • Millikan, R. G. (2004). Varieties of meaning. Cambridge, MA: MIT Press.
  • Mills, J. W. (2008). The nature of the extended analog computer. Physica D: Nonlinear Phenomena, 237(9), 12351256.
  • Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.
  • Morcom, A. M., & Fletcher, P. C. (2007). Does the brain have a baseline? Why we should be resisting a rest. NeuroImage, 37(4), 10731082.
  • Moss, F., Ward, L. M., & Sannita, W. G. (2004). Stochastic resonance and sensory information processing: A tutorial and review of application. Clinical Neurophysiology, 115(2), 267281.
  • Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT Press.
  • von Neumann, J. (1958). The computer and the brain. New Haven, CT: Yale University Press.
  • Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
  • Newell, A., & Simon, H. A. (1976). Computer science as an empirical enquiry: Symbols and search. Communications of the Association for Computing Machinery, 19, 113126.
  • O’Brien, G., & Opie, J. (2006). How do connectionist networks compute?Cognitive Processing, 7, 3041.
  • Oram, M. W., Wiener, M. C., Lestienne, R., & Richmond, B. J. (1999). Stochastic nature of precisely timed spike patterns in visual system neuronal responses. Journal of Neurophysiology, 81, 30213033.
  • O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge, MA: MIT Press.
  • Penrose, R. (1994). Shadows of the mind. Oxford, England: Oxford University Press.
  • Pereda, E., Quiroga, R. Q., & Bhattacharya, J. (2005). Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 77(1–2), 137.
  • Perkel, D. H. (1990). Computational neuroscience: Scope and structure. In E. L. Schwartz (Ed.), Computational neuroscience (pp. 3845). Cambridge, MA: MIT Press.
  • Piccinini, G. (2004). The first computational theory of mind and brain: A close look at McCulloch and Pitts’s “Logical calculus of ideas immanent in nervous activity.”Synthese, 141(2), 175215.
  • Piccinini, G. (2007a). Computing mechanisms. Philosophy of Science, 74(4), 501526.
  • Piccinini, G. (2007b). Computational modeling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind?Australasian Journal of Philosophy, 85(1), 93115.
  • Piccinini, G. (2007c). Computationalism, the Church-Turing thesis, and the Church-Turing fallacy. Synthese, 154(1), 97120.
  • Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly, 89(1), 3273.
  • Piccinini, G. (2010). The resilience of computationalism. Philosophy of Science, 77(5), 852861.
  • Piccinini, G. (2011a). The physical Church-Turing thesis: Modest or bold?British Journal for the Philosophy of Science, 62(4), 733769.
  • Piccinini, G. (2011b). Computationalism. In E. Margolis, R. Samuels & S. P. Stich (Eds.), Oxford handbook of philosophy and cognitive science (pp. 222229). Oxford, England: Oxford University Press.
  • Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283311.
  • Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 138.
  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences. Cambridge, MA: Cambridge University Press.
  • Posner, M. I. (2004). Cognitive neuroscience of attention. New York: Guilford Press.
  • Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society, 199, 128.
  • Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.
  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 92(1), 676682.
  • Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449476.
  • Ramsey, W. M. (2007). Representation reconsidered. Cambridge, MA: Cambridge University Press.
  • Rapaport, W. J. (1998). How minds can be computational systems. Journal of Experimental and Theoretical Artificial Intelligence, 10, 403419.
  • Rashevsky, N. (1938). Mathematical biophysics: Physicomathematical foundations of biology. Chicago, IL: University of Chicago Press.
  • Recanzone, G. H., Merzenich, M. M., & Schreiner, C. E. (1992). Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. Journal of Neurophysiology, 67(5), 10711091.
  • Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1999). Spikes: Exploring the neural code. Cambridge, MA: MIT Press.
  • Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw-Hill.
  • Roy, A., Steinmetz, P. N., Hsiao, S. S., Johnson, K. O., & Niebur, E. (2007). Synchrony: A neural correlate of somatosensory attention. Journal of Neurophysiology, 98(3), 16451661.
  • Rubel, L. A. (1985). The brain as an analog computer. Journal of Theoretical Neurobiology, 4, 7381.
  • Rubel, L. A. (1993). The extended analog computer. Advances in Applied Mathematics, 14(1), 3950.
  • Rubel, L. A., & Singer, M. F. (1985). A differentially algebraic elimination theorem with application to analog computability in the calculus of variations. Proceedings of the American Mathematical Society, 94(4), 653658.
  • Rumelhart, D. E., & McClelland, J. M. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.
  • Scarantino, A., & Piccinini, G. (2010). Information without truth. Metaphilosophy, 43(3), 313330.
  • Schneider, S. (2011). Language of thought: A new philosophical direction. Cambridge, MA: MIT Press.
  • Schreiner, C. E., & Winer, J. A. (2007). Auditory cortex mapmaking: Principles, projections, and plasticity. Neuron, 56(2), 356365.
  • Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417457.
  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation and information coding. Journal of Neuroscience, 18, 38703896.
  • Shagrir, O. (2010). Brains as analog-model computers. Studies in History and Philosophy of Science, 41, 271279.
  • Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana, IL, University of Illinois Press.
  • Shapiro, S. C. (1995). Computationalism. Minds and Machines, 5(4), 517524.
  • Shepherd, G. (1999). Electronic properties of axons and dendrites. In M. J. Zigmond, F. E. Bloom, S. C. Landys, J. L. Roberts, & L. R. Squire (Eds.), Fundamental neuroscience (pp. 115117). Amsterdam: Academic Press.
  • Siegelmann, H. T. (2003). Neural and super-Turing computing. Minds and Machines, 13(1), 103114.
  • Smolensky, P. (1989). Connectionist modeling: Neural computation/mental connection. In L. A. C. L. Nadel, P. Culicover & R. M. Harnish (Eds.), Neural connections, mental computation. Cambridge, MA: MIT Press.
  • Stein, R. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5(2), 173194.
  • Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K. O., & Niebur, E. (2000). Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404(6774), 187190.
  • Tass, P. A., Fieseler, T., Dammers, J., Dolan, K., Morosan, P., Majtanik, M., Boers, F., Muren, A., Zilles, K., & Fink, G. R. (2003). Synchronization tomography: A method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography. Physical Review Letters, 90(8), 088101.
  • Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Cambridge, MA: Harvard University Press.
  • Turing, A. M. (19367 [1965]). On computable numbers, with an application to the Entscheidungsproblem. In M. Davis (Ed.), The undecidable (pp. 116154). Hewlett, NY: Raven Press.
  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155168.
  • VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends in Neuroscience, 28(1), 14.
  • Vera, A. H., & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive Science, 17, 748.
  • Waskan, J. A. (2003). Intrinsic cognitive models. Cognitive Science, 27(2), 259283.
  • White, J. A., Klink, R., Alonso, A., & Kay, A. R. (1998). Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. Journal of Neurophysiology, 80(1), 262269.
  • Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine. Cambridge, MA: MIT Press.
  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 124.
  • Wimsatt, W. C. (2002). Functional organization, analogy, and inference. in A. Ariew, R. Cummins & M. Perlman (Eds.), Functions: New essays in the philosophy of psychology and biology (pp. 173221). Oxford, England: Oxford University Press.
  • Winsberg, E. (2010). Science in the age of computer simulation. Chicago, IL: University of Chicago Press.
  • Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.
  • Wong, R. K. S., Traub, R. D., & Miles, R. (1986). Cellular basis of neural synchrony in epilepsy. In A. V. Delgado-Escueta, A. A. Ward, D. M. Woodbury, & R. J. Porter (Eds.), Advances in neurology. New York: Raven Press.
  • Yassin, L., Benedetti, B. L., Jouhanneau, J. S., Wen, J. A., Poulet, J. F. A., & Barth, A. L. (2010). An embedded subnetwork of highly active neurons in the neocortex. Neuron, 68, 10431050.
  • Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews Neurology, 6, 1528.