SEARCH

SEARCH BY CITATION

References

  • Abbott, J. T., & Griffiths, T. L. (2011). Exploring the influence of particle filter parameters on order effects in causal learning. In L. Carlson (Ed.), Proceedings of the 33rd annual conference of the cognitive sciences.
  • Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine Learning, 50, 543.
  • Bi, G.-Q., & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 1046410472.
  • Blaisdell, A. (2006). Causal reasoning in rats. Science, 311(5763), 10201022.
  • Buechner, M. J., & Cheng, P. W. (1997). Causal induction: The power PC theory verses the Rescorla-Wagner model. In Proceedings of the 19th Conference of the Cognitive Science Society (pp. 5560).
  • Bush, D., Philippides, A., Husbands, A., & O'Shea, M. (2010). Dual coding with STDP in an auto-associative network model of the hippocampus. PLoS Computational Biology, 6(7), e1000839.
  • Bussel, F. K., Kriener, B., & Timme, M. (2011). Inferring synaptic connectivity from spatio-temporal spike patterns. Frontiers in Computational Neuroscience, 5(3), 3.
  • Butz, M., Shirinov, E., & Reif, K. L. (2010). Self-organizing sensorimotor maps plus internal motivations yield animal-like behavior. Adaptive Behavior, 18(3–4), 315337.
  • Cheng, P. W. (1997). From covariation to causation: A causal power theory. Psychological Review, 104(2), 367405.
  • Chronicle, E. P., MacGregor, J. M., & Ormerod, T. C. (2004). What makes an insight problem? The roles of heuristics, goal conception, and solution recording in knowledge-lean problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 1427.
  • Citra, A., & Malenka, R. C. (2008). Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33, 1841.
  • Clark, A. (2012). Whatever next? Predictive brains, situated agents, and the future of cognitive science Behavioral and Brain Sciences, 36(3), 181204.
  • Computation, Causation, and Discovery Edited by Glymour, C. F. & Cooper, G.F. (1999). AAAI Press.
  • Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in human central nervous system. Brain, 129, 16591673.
  • Craik, K. (1943). The nature of explanation. Cambridge, UK: Cambridge University Press.
  • Danks, D. (2003). Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology, 47, 109121.
  • Daw, N. C., Courville, A. C., & Dayan, P. (2006). Representation and timing in theories of the dopamine system. Neural Computation, 18, 16371677.
  • Daw, N. D., Courville, A. C., & Dayan, P. (2008). Semi-rational models of conditioning: The case of trial order. In N. Chater and M. Oaksford (Ed.), The probabilistic mind: Prospects for Bayesian cognitive science (pp. 427448). Oxford, UK: Oxford University Press.
  • Dayan, P., Hinton, G. E., Neal, R.M., & Zemel, R.S. (1995). The Helmholtz machine. Neural Computation, 7, 10221037.
  • Deneve, S., Duhamel, J.-R., & Pouget, A. (2007). Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of kalman filters. The Journal of Neuroscience, 27(21), 57445756.
  • Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade.
  • Fernando, C., Goldstein, R., & Szathmary, E. (2010). The neuronal replicator hypothesis. Neural Computation, 22(11), 28092857.
  • Fernando, C., Karishma, K. K., & Szathmary, E. (2008). Copying and evolution of neuronal topology. PLoS ONE, 3(11), e3775.
  • Fernando, C., & Szathmáry, E. (2009). Natural selection in the brain. In B. Glatzeder, V. Goel, & A. von Müller (Eds.), Toward a theory of thinking (pp. 291340). Berlin: Springer.
  • Fernando, C., & Szathmáry, E. (2010). Chemical, neuronal and linguistic replicators. In M. Pigliucci & G. Müller. (Eds.), Towards an extended evolutionary synthesis (pp. 209249). Cambridge, MA: MIT Press.
  • Fernando, C., Szathmáry, E., & Husbands, P. (2012). Selectionist and evolutionary approaches to brain function: A critical appraisal. Frontiers in Computational Neuroscience, 6, 24.
  • Fernando, C., Vasas, V., Szathmary, E., & Husbands, P. (2011). Evolvable neuronal paths: A novel basis for information and search in the brain. PLoS ONE, 6(8), e23534.
  • Fonseca, R., Nagerl, U. V., Morris, R. G. M., & Bonhoeffer, T. (2004). Competing for memory: Hippocampal LTP under regimes of reduced protein synthesis. Neuron, 44, 10111020.
  • Fries, P., Nikolic, D., & Singer, W. (2007). The gamma cycle. Trands in Neurosciences, 30(7), 309316.
  • Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of Hebbian learning. Biological Cybernetics, 87, 404415.
  • Glymour, C. (2003). Learning, prediction and causal Bayes nets. Trends in Cognitive Sciences, 7(1), 4348.
  • Glymour, C., & Cooper, G. F. (Eds). (1999). Computation, causation, and discovery. Cambridge: AAAI Press.
  • Glymour, C. N. (2001). The mind's arrows: Bayes nets and graphical causal models in psychology. MIT Press.
  • Gopnik, A., Glymour, C., et al. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111(1), 332.
  • Gopnik, A., & Schulz, L. (2004). Mechanisms of theory formation in young children. Trends in Cognitive Sciences, 8(8), 371377.
  • Gopnik, A., & Schultz, L. (Eds). (2007). Causal learning: Psychology, philosophy, and computation. New York, NY, US: Oxford University Press.
  • Gopnik, A., & Tenenbaum, B. (2007). Bayesian networks, Bayesian learning and cognitive development. Developmental Science, 10(3), 281287.
  • Griffiths, T. L., & Tenenbaum, B. (2005). Structure and strength in causal induction. Cognitive Psychology, 51, 334384.
  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and percption. Behavioral and Brain Science, 27, 377442.
  • Hardingham, N. R., Hardingham, G. E., Fox, K. D., & Jack, J. J. B. (2007). Presynaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. Journal of Neurophysiology, 97, 29652975.
  • Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16, 710715.
  • Hebb, D. O. (1949). The organization of behaviour: A neuropsychological theory. New York: John Wiley & Sons.
  • Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.
  • Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 15271554.
  • Huxter, J. R., Senior, T. J., Allen, K., & Csicsvari, J. (2008). Theta phase-specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nature Neuroscience, 11(5), 587594.
  • Izhikevich, E. M. (2006). Polychronization: Computation with spikes. Neural Computation, 18(2), 245282.
  • Izhikevich, E. M., & Hoppensteadt, F. C. (2009). Polychronous wavefront computations. International Journal of Bifurcation and Chaos, 19, 17331739.
  • Kamin, L. J. (1969). Predictability, surprise, attention and conditioning. In B. A. Campbell & R. M. Church (Eds.), Punishment and aversive behavior (pp. 279296). New York: Appleton-Century-Crofts.
  • Kandel, E. R., Schwartz, J. H., & Jessell, J. H. (2000). Principles of neural science. New York: McGrew-Hill.
  • Kemp, C., Goodman, N. D., & Tenenbaum, J. B. (2010). Learning to learn causal models. Cognitive Science, 34(7), 11851243.
  • Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 1068710692.
  • Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712719.
  • Kohler, W. (1925). The mentality of apes. London: K. Paul, Trench, Trubner & co.
  • Lagnado, D. A., & Speekenbrink, M. (2010). The influence of delays in real-time causal learning. The Open Psychology Journal, 3, 184195.
  • Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., & Sloman, S. A. (2007). Beyond covariation: Cues to causal structure. In A. Gopnik & L. Schulz. (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 154172). Oxford, UK: Oxford University Press.
  • Laskey, K. B., & Myers, J. W. (2003). Population Markov chain Monte Carlo. Machine Learning, 50, 175196.
  • Lisman, J. (2005). The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus, 15(7), 913922.
  • Lober, K., & Shanks, D. R. (2000). Is causal induction based on causal power? Critique of Cheng (1997). Psychological Review, 107(1), 195212.
  • Love, B. C. (1999). Utilizing time: Asynchronous binding. Advances in Neural Information Processing Systems, 11, 3844.
  • Makarov, V. A., Panetsos, F., & de Feo, O. (2005). A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. Journal of Neuroscience Methods, 144, 265279.
  • von der Malsburg, C., (1999). The what and why of binding: The modeler's perspective. Neuron, 24, 95104.
  • Marr, D., & Poggio, T. (1977). From understanding computation to understanding neural circuitry. Neurosciences Research Progress Bulletin, 15, 470488.
  • Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE, 2(5), e439.
  • Miles, R. (1990). Synaptic excitation of inhibitory cells by single CA3 pyramidal cells of the guinea pig in vitro. Journal of Physiology, 428, 6177.
  • Nadasdy, Z., Hirase, H., Czurko, A., Csicsvara, J., & Buzsaki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. The Journal of Neuroscience, 19(21), 94979507.
  • Nadel, L., Campbell, J., & Ryan, L. (2007). Autobiographical memory retrieval and hippocampal activation as a function of repetition and the passage of time. Neural Plasticity, 2007.
  • Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217227.
  • Nadel, L., Samsonovich, A., Ryan, L., & Moscovitch, M. (2000). Multiple trace theory of human memory: Computational, neuroimaging, and neuropsychological results. Hippocampus, 10, 352368.
  • Nelson, S. B., & Turrigiano, G. G. (2008). Srength through diversity. Neuron, 60, 477482.
  • Nessler, B., Pfeiffer, M., & Maass, W. (2010). STDP enables spiking neurons to detect hidden causes of their inputs. Proceedings of NIPS 2009: Advances in neural information processing systems (pp. 13571365). Cambridge, MA: MIT Press.
  • Nessler, B., Pfeiffer, M., Buesing, L., & Maass, W. (2013). Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PloS Computational Biology, 9(4), e1003037.
  • O'Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317330.
  • Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press.
  • Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 7987.
  • Ryan, L., Nadel, L., Keil, K., Putnam, K., Schyner, D., Trouard, T., & Moscovitch, M. (2001). Hippocampal complex and retrieval of recent and very remote autobiographical memories: Evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus, 11, 707714.
  • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II (pp. 6499). New York: Appleton-Century-Crofts.
  • Richardson, T. (1996). Discovering cyclic causal structure. Report CMU-PHIL-68.
  • Royer, S., & Pare, D. (2003). Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 422, 518522.
  • Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2010). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review, 117(4), 11441167.
  • Sato, N., & Yamaguchi, Y. (2003). Memory encoding by theta phase precession in the hippocampal network. Neural Computation, 15(10), 23792397.
  • Shastri, L., & Ajjanagadde, V. (1993). From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings. Behavioural and Brain Sciences, 16, 417494.
  • Shouval, H. Z., Wang, S. S.- H., & Wittenberg, G. M. (2012). Spike timing dependent plasticity: A consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 4, 19.
  • Simonton, D. K. (1995). Foresight in insight? A darwinian answer. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 464494). Cambridge, MA: MIT Press.
  • Singer, W. (1999). Neuronal synhrony: A versatile code for the definition of relations? Neuron, 24(1), 4965.
  • Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2004). Children's causal inferences from indirect evidence. Backwards blocking and Bayesian reasoning in preschoolers. Cognitive Science, 28, 303333.
  • Spellman, B. A. (1996). Acting as intuitive scientists: Contingency judgements are made while controlling for alternative potential causes. Psychological Science, 7(6), 337342.
    Direct Link:
  • Sporns, O., & Kotter, R. (2004). Motifs in brain networks. PLoS Biology, 2(11), e369.
  • Sprites, P., Glymour, C., & Scheines, R. (2000). Causation, prediction and search. Cambridge: The MIT Press.
  • Steels, L., & De Beule, J. (2006). A (very) brief introduction to fluid construction grammar. Proceedings of the 3rd international workshop on scalable natural language. Available at: http://portal.acm.org/citation.cfm?id=1621473. Accessed July 20, 2013.
  • Steels, L., & Szathmáry, E. (2008). Replicator dynamics and language processing. In A. D. M. Smith, K. Smith & R. Ferrer i Cancho (Eds.), The evolution of language: Proceedings of the 7th international conference (EVOLANG7) (p. 503). Singapore: World Scientific Press.
  • Steyvers, M., Tenenbaum, J. B., Waggenmakers, B., & Blum, B. (2003). Inferring causal networks from observations and interventions. Cognitive Science, 27, 453489.
  • Strens, M. J. A. (2003). Evolutionary MCMC sampling and optimization in discrete spaces. Proceedings of the twentieth international conference on machine learning (ICML-2003), Washington, D.C.
  • Taylor, A. H., Hunt, G. R., Medina, F. S., Gray, R. D. (2009). Do new caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society B, 276(1655), 247254.
  • Tenenbaum, J. B., & Griffiths, T. L. (2001). Structure learning in human causal induction. In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems 13. (pp. 5965). Cambridge: MIT Press.
  • Tenenbaum, B., & Griffiths, T. L. (2003). Theory-based causal inference. In S. Becker, S. Thrun, & T. Obermayer (Eds.), Advances in neural information processing systems 15 (pp. 3542). Cambridge, MA: MIT Press.
  • Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 12791285.
  • Van Hamme, L., & Wasserman, E. A. (1994). Cue competition in causality judgements: The role of nonpresentation of compound stimulus elements. Learning and Motivation, 25, 127151.
  • White, P. A. (1998). Causal judgement: Use of different types of contingency information as confirmatory and disconfirmatory. European Journal of Cognitive Psychology, 10, 131170.
  • Wilson, R. C., & Finkel, L. H. (2009). A Neural implementation of the kalman filter. Neural Information Processing Systems (NIPS), 20622070.
  • Yamaguchi, Y. (2003). A theory of hippocampal memory based on theta phase precession. Biol Cybern., 89, 19.
  • Young, J. D., & Santos, E. (1996). Temporal Bayesian networks. Technical report, Department of Electrical and Computer Engineering, Air Force Institute of Technology.
  • Yu, A. J., & Dayan, P. (2002). Acetylcholine in cortical inference. Neural Networks, 15, 719730.