SEARCH

SEARCH BY CITATION

References

  • Batchelder, W. H. (2009). Cognitive psychometrics: Using multinomial processing tree models as measurement tools. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model based measurement (pp. 7193). Washington, DC: American Psychological Association Books.
  • Brown, S., & Heathcote, A. J. (2008). The simplest complete model of choice reaction time: Linear ballistic accumulation. Cognitive Psychology, 57, 153178.
  • Brown, S., Marley, A. A. J., Donkin, C., & Heathcote, A. (2008). An integrated model of choices and response times in absolute identification. Psychological Review, 115, 396425.
  • Busemeyer, J. R., & Townsend, J. T. (1992). Fundamental derivations from decision field theory. Mathematical Social Sciences, 23, 255282.
  • Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic–cognitive approach to decision making. Psychological Review, 100, 432459.
  • Coast, J., Salisbury, C., de Berker, D., Noble, A., Horrocks, S., Peters, T. J., & Flynn, T. N. (2006). Preferences for aspects of a dermatology consultation. British Journal of Dermatology, 155, 387392.
  • Collins, A. T., & Rose, J. M. (2011). Estimation of stochastic scale with best–worst data. Paper presented at the Second International Choice Modelling Conference, Leeds, UK.
  • Diederich, A., & Busemeyer, J. R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time, and simple response time. Journal of Mathematical Psychology, 47, 304322.
  • Finn, A., & Louviere, J. J. (1992). Determining the appropriate response to evidence of public concern: The case of food safety. Journal of Public Policy and Marketing, 11, 1225.
  • Flynn, T. N., Louviere, J. J., Peters, T. J., & Coast, J. (2007). Best–worst scaling: What it can do for health care research and how to do it. Journal of Health Economics, 26, 171189.
  • Flynn, T. N., Louviere, J. J., Peters, T. J., & Coast, J. (2008). Estimating preferences for a dermatology consultation using best–worst scaling: Comparison of various methods of analysis. BMC Medical Research Methodology, 8(76), doi:10.1186/1471-2288-8-76.
  • Flynn, T. N., Louviere, J. J., Peters, T. J., & Coast, J. (2010). Using discrete choice experiments to understand preferences for quality of life. Social Science & Medicine, 70, 19571965.
  • Flynn, T. N., & Marley, A. A. J. (2013). Best-worst scaling: Theory and methods. In S. Hess & A. Daly (Eds.), Handbook of choice modelling, Edward Elgar Publishing.
  • Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon, D. Y., Ridderinkhof, K. R., & Wagenmakers, E.-J. (2008). Striatum and pre–SMA facilitate decision–making under time pressure. Proceedings of the National Academy of Sciences of the United States of America, 105, 1753817542.
  • Franco-Watkins, A. M., & Johnson, J. G. (2011a). Applying the decision moving window to risky choice: Comparison of eye–tracking and mouse–tracing methods. Judgment and Decision Making, 6, 740749.
  • Franco-Watkins, A. M., & Johnson, J. G. (2011b). Decision moving window: Using interactive eye tracking to examine decision processes. Behavior Research Methods, 43, 853863.
  • Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society, Series B, 362, 16411654.
  • Gilchrist, W. (2000). Statistical modelling with quantile functions. London: Chapman & Hall/CRC.
  • Goodman, S. N. (2009). An international comparison of retail wine consumer choice. International Journal of Wine Business Research, 21, 4149.
  • Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Frontiers in Psychology, 3, n/a. doi: 10.3389/fpsyg.2012.00292.
  • Ho, T., Brown, S., & Serences, J. (2009). Domain general mechanisms of perceptual decision making in human cortex. Journal of Neuroscience, 29, 86758687.
  • Hsee, C. H., & Rottenstreich, Y. (2004). Music, pandas, and muggers: On the affective psychology of value. Journal of Experimental Psychology: General, 133, 2330.
  • Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Strauss, and Giroux.
  • Lee, J. A., Soutar, G. N., & Louviere, J. J. (2008). The best–worst scaling approach: An alternative to Schwartz's values survey. Journal of Personality Assessment, 90, 335347.
  • Louviere, J. J., & Flynn, T. N. (2010). Using best–worst scaling choice experiments to measure public perceptions and preferences for healthcare reform in Australia. The Patient: Patient–Centered Outcomes Research, 3, 275283.
  • Louviere, J. J., & Islam, T. (2008). A comparison of importance weights and willingness-to-pay measures derived from choice–based conjoint, constant sum scales and best–worst scaling. Journal of Business Research, 61, 903911.
  • Luce, R. D. (1959). Individual choice behavior: A theoretical analysis. New York: Wiley.
  • Luce, R. D. (1986). Response times. New York: Oxford University Press.
  • Ludwig, C. J. H., Farrell, S., Ellis, L. A., & Gilchrist, I. D. (2009). The mechanism underlying inhibition of saccadic return. Cognitive Psychology, 59, 180202.
  • van der Maas, H. L. J., Molenaar, D., Maris, G., Kievit, R. A., & Borsboom, D. (2011). Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118, 339356.
  • Marley, A. A. J. (1989a). A random utility family that includes many of the “classical” models and has closed form choice probabilities and choice reaction times. British Journal of Mathematical and Statistical Psychology, 42, 1336.
  • Marley, A. A. J. (1989b). Addendum to “A random utility family” British Journal of Mathematical and Statistical Psychology. British Journal of Mathematical and Statistical Psychology, 42, 280.
  • Marley, A. A. J., & Colonius, H. (1992). The “horse race” random utility model for choice probabilities and reaction times, and its competing risks interpretation. Journal of Mathematical Psychology, 36, 120.
  • Marley, A. A. J., Flynn, T. N., & Louviere, J. J. (2008). Probabilistic models of set-dependent and attribute-level best-worst choice. Journal of Mathematical Psychology, 52, 281296.
  • Marley, A. A. J., & Islam, T. (2012). Conceptual relations between expanded rank data and models of the unexpanded rank data. Journal of Choice Modelling, 5, 3880.
  • Marley, A. A. J., & Louviere, J. J. (2005). Some probabilistic models of best, worst, and best–worst choices. Journal of Mathematical Psychology, 49, 464480.
  • Marley, A. A. J., & Pihlens, D. (2012). Models of best–worst choice and ranking among multiattribute options (profiles). Journal of Mathematical Psychology, 56, 2434.
  • McFadden, D. (1978). Modeling the choice of residential location. In A. Karlquist, L. Lundqvist, F. Snickars, & J. Weibull (Eds.), Spatial interaction theory and planning models (pp. 7596). Amsterdam: North–Holland.
  • Mueller, S., Lockshin, L., & Louviere, J. J. (2010). What you see may not be what you get: Asking consumers what matters may not reflect what they choose. Marketing Letters, 21, 335350.
  • Mueller Loose, S., & Lockshin, L. (2013). Testing the robustness of best worst scaling for cross-national segmentation with different numbers of choice sets. Food Quality and Preference, 27, 230242.
  • Otter, T., Allenby, G. M., & van Zandt, T. (2008). An integrated model of discrete choice and response time. Journal of Marketing Research, 45, 593607.
  • Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman (Eds.), Measures of personality and social psychological attitudes (pp. 1759). San Diego, CA: Academic Press.
  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria.
  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59108.
  • Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two–choice decisions. Psychological Science, 9, 347356.
    Direct Link:
  • Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two–choice reaction time. Psychological Review, 111, 333367.
  • Rieskamp, J., Busemeyer, J. R., & Mellers, B. A. (2006). Extending the bounds of rationality: Evidence and theories of preferential choice. Journal of Economic Literature, 44, 631661.
  • Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multi–alternative decision field theory: A dynamic artificial neural network model of decision–making. Psychological Review, 108, 370392.
  • Ruan, S., MacEachern, S. N., Otter, T., & Dean, A. M. (2008). The dependent Poisson race model and modeling dependence in conjoint choice experiments. Psychometrika, 73, 261288.
  • Ryan, M., & Farrar, S. (2000). Using conjoint analysis to elicit preferences for health care. British Medical Journal, 320, 15301533.
  • Szeinbach, S. L., Barnes, J. H., McGhan, W. F., Murawski, M. M., & Corey, R. (1999). Using conjoint analysis to evaluate health state preferences. Drug Information Journal, 33, 849858.
  • Train, K. (2009). Discrete choice methods with simulation (2nd). Cambridge, England: Cambridge University Press.
  • Trueblood, J. S., Brown, S. D., & Heathcote, A. (2013). The multi-attribute linear ballistic accumulator model of context effects in multi–alternative choice. Manuscript submitted for publication.
  • Trueblood, J. S., Brown, S. D., Heathcote, A., & Busemeyer, J. R. (2013). Not just for consumers: Context effects are fundamental to decision–making. Psychological Science, 24, 901908.
  • Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in dynamical models of multialternative choice. Psychological Review, 111, 757769.
  • Wollschläger, L. M., & Diederich, A. (2012). The 2N-ary choice tree model for N-alternative preferential choice. Frontiers in Psychology, 3. doi: 10.3389/fpsyg.2012.00189.
  • van Zandt, T., Colonius, H., & Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching. Psychonomic Bulletin & Review, 7, 208256.