SEARCH

SEARCH BY CITATION

References

  • Beppu, A., & Griffiths, T. L. (2009). Iterated learning and the cultural rachet. In N. Taatgen, H. van Rijn, L. Schomaker, & J. Nerbonne (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 20892094). Austin, TX: Cognitive Science Society.
  • Brighton, H., & Kirby, S. (2001). Meaning space structure determines the stability of culturally evolved compositional language (Tech. Rep.). Edinburgh, Scotland: Language Evolution and Computation Research Unit: University of Edinburgh.
  • Brighton, H., Smith, K., & Kirby, S. (2005). Language as an evolutionary system. Physics of Life Reviews, 2, 177226.
  • Burkett, D., & Griffiths, T. L. (2010). Iterated learning of multiple languages from multiple teachers. In Proceedings of Evolang (Vol. 8), Utrecht, the Netherlands.
  • Bybee, J. (2000). Lexicalization of sound change and alternating environments. In M. Broe & J. Pierrehumbert (Eds.), Papers in laboratory phonology v. acquisition and the lexicon (pp. 250268). Cambridge, UK: Cambridge University Press.
  • Christiansen, M., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31, 489558.
  • Du Bois, J. (1987). The discourse basis of ergativity. Language, 63, 805855.
  • Evans, N. (2003). Context, culture, and structuration in the languages of Australia. Annual Reviews in Anthropology, 32, 1340.
  • Freeberg, T., Dunbar, R., & Ord, T. (2012). Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 17851801.
  • Griffiths, T. L., Christian, B., & Kalish, M. (2008). Using category structures to test iterated learning as a method for identifying inductive biases. Cognitive Science, 31(1), 68107.
  • Griffiths, T. L., & Kalish, M. (2005). A Bayesian view of language evolution by iterated learning. In B. G. Bara, L. W. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 827832). Austin, TX: Cognitive Science Society.
  • Griffiths, T. L., & Kalish, M. (2007). Language evolution by iterated learning with Bayesian agents. Cognitive Science, 31, 441480.
  • Hauser, M., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 15691579.
  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.
  • Kalish, M., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning: Intergenerational knowledge transmission reveals inductive biases. Psychonomic Bulletin and Review, 14(2), 288294.
  • Kirby, S. (2001). Spontaneous evolution of linguistic structure—An iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary Computation, 5(2), 102110.
  • Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 1068110686.
  • Kirby, S., & Hurford, J. (2002). The emergence of linguistic structure: An overview of the iterated learning model. In A. Cangelosi & D. Parisi (Eds.), Simulating the evolution of language (pp. 121148). London: Springer Verlag.
  • Komarova, N., & Nowak, M. (2001). Natural selection of the critical period for language acquisition. Proceedings of the Royal Society of London B: Biological Sciences, 268, 11891196.
  • Landau, B., Smith, L., & Jones, S. (1988). The importance of shape in early lexical learning. Cognitive Development, 3, 299321.
  • Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 6, 707710.
  • Lupyan, G., & Dale, R. (2010). Language structure is partly determined by social structure. PLoS ONE, 5(1), e8559.
  • Maurits, L., Perfors, A., & Navarro, D. J. (2010). Why are some word orders more common than others? A uniform information density account. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel & A. Culotta (Eds.), Neural information processing systems (Vol. 23) (pp. 15851593). Cambridge, MA: MIT Press.
  • McComb, K., & Semple, S. (2005). Coevolution of vocal communication and sociality in primates. Biology Letters, 1, 381385.
  • Nowak, M., Komarova, N., & Niyogi, P. (2001). Evolution of universal grammar. Science, 291, 114118.
  • Pinker, S., & Bloom, P. (1990). Natural language and natural selection. The Behavioral and Brain Sciences, 13(4), 707784.
  • Reali, F., & Griffiths, T. L. (2009a). The evolution of frequency distributions: Relating regularization to inductive biases through iterated learning. Cognition, 111, 317328.
  • Reali, F., & Griffiths, T. L. (2009b). Words as alleles: Connecting language evolution with Bayesian learners to models of genetic drift. Proceedings of the Royal Society of London B: Biological Sciences, 277(1680), 429436.
  • Smith, K. (2009). Iterated learning in populations of Bayesian agents. In N. Taatgen, H. van Rijn, L. Schomaker, & J. Nerbonne (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 697702). Austin, TX: Cognitive Science Society.
  • Smith, K., & Wonnacott, E. (2010). Eliminating unpredictable variation through iterated learning. Cognition, 116, 444449.
  • Smith, L., Jones, S., Yoshida, H., & Colunga, E. (2003). Whose DAM account? Attentional learning explains Booth and Waxman. Cognition, 87, 209213.
  • Trudgill, P. (2009). Typology and sociolinguistics: Linguistic structure, social structure and explanatory comparative dialectology. Folia Linguistica, 31, 349360.
  • Zuidema, W. (2002). How the poverty of the stimulus solves the poverty of the stimulus. In S. Becker, S. Thrun & K. Obermayer (Eds.), Neural information processing systems (Vol. 15) (pp. 4350). Cambridge, MA: MIT Press.