Get access

Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae

Authors

  • Juliano Sarmento Cabral,

    Corresponding author
    1. Biodiversity, Macroecology and Conservation Biogeography, University of Göttingen, Göttingen, Germany
    • Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
    Search for more papers by this author
  • Florian Jeltsch,

    1. Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
    Search for more papers by this author
  • Wilfried Thuiller,

    1. Laboratoire D'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, Grenoble cedex 9, France
    Search for more papers by this author
  • Steven Higgins,

    1. Functional Plant Biogeography, Institute for Physical Geography, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
    Search for more papers by this author
  • Guy F. Midgley,

    1. South African National Biodiversity Institute, Cape Town, South Africa
    2. School of Agricultural, Earth, and Environment Sciences, University of Kwazulu-Natal, Scottsville, South Africa
    Search for more papers by this author
  • Anthony G. Rebelo,

    1. South African National Biodiversity Institute, Cape Town, South Africa
    Search for more papers by this author
  • Mathieu Rouget,

    1. Biodiversity Planning Unit, South African National Biodiversity Institute, Pretoria, South Africa
    Search for more papers by this author
  • Frank M. Schurr

    1. Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
    2. Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier 2, Montpellier cedex 5, France
    Search for more papers by this author

Correspondence: Juliano Sarmento Cabral, Biodiversity, Macroecology and Conservation Biogeography, University of Göttingen. Büsgenweg 2, 37077, Göttingen, Germany.

E-mail: jsarmen@uni-goettingen.de; jscabral@gmx.de

Abstract

Aim

To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change.

Location

South African Cape Floristic Region.

Methods

We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat.

Results

Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography.

Main conclusions

Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography.

Get access to the full text of this article

Ancillary