SEARCH

SEARCH BY CITATION

References

  • Abe, J., Kusuhara, M., Ulevitch, R. J., Berk, B. C. & Lee, J. D. 1996. Big mitogen-activated protein kinase 1 (BMK1) is redox-sensitive kinase. J. Biol. Chem. 271, 1658616590.
  • Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T. & Saltiel, A. R. 1995. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270, 2748927494.
  • Chao, T. H., Hayashi, M., Tapping, R. L., Kato, Y. & Lee, J. D. 1999. MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J. Biol. Chem. 274, 3603536038.
  • Duncia, J. V., Santella, J. B. III, Higley, C. A., Pitts, W. J., Wityak, J., Frietze, W. E., Rankin, F. W., Sun, J. H., Earl, R. A., Tabaka, A. C., Teleha, C. A., Blom, K. F., Favata, M. F., Manos, E. J., Daulerio, A. J., Stradley, D. A., Horiuchi, K., Copeland, R. A., Scherle, P. A., Trzaskos, J. M., Magolda, R. L., Trainor, G. L., Wexler, R. R., Hobbs, F. W. & Olson, R. E. 1998. MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg. Med. Chem. Lett. 8, 28392844.
  • Eyster, K. M. 1998. Introduction to signal transduction: a primer for untangling the web of intracellular messengers. Biochem. Pharmacol. 55, 19271938.
  • Ferrell, J. E.Jr. 1996. MAP kinases in mitogenesis and development. Curr. Top. Dev. Biol. 33, 160.
  • Furue, M., Okamoto, T., Hayashi, H., Sato, J. D., Asashima, M. & Saito, S. 1999. Effects of hepatocyte growth factor (HGF) and activin A on the morphogenesis of rat submandibular gland-derived epithelial cells in serum-free collagen gel culture. In Vitro Cell. Dev. Biol. Anim. 35, 131135.
  • Gomperts, B. D., Kramer, I. M. & Tatham, P. E. R. 2002. Signaling pathways operated by receptor protein tyrosine kinases. In: Signal Transduction. (ed BD Gomperts, IM Kramer & PER Tatham), London: Academic Press, pp. 257282.
  • Gresik, E. W., Koyama, N., Hayashi, T. & Kashimata, M. 2009. Branching morphogenesis in the fetal mouse submandibular gland is codependent on growth factors and extracellular matrix. J. Med. Invest. 56, (Suppl.), 228233.
  • Hogan, B. L. 1999. Morphogenesis. Cell 96, 225233.
  • Ikari, T., Hiraki, A., Seki, K., Sugiura, T., Matsumoto, K. & Shirasuna, K. 2003. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland. Dev. Dyn. 228, 173184.
  • Jaskoll, T. & Melnick, M. 2004. Embryonic salivary gland branching morphogenesis. In: Branching Morphogenesis (ed. Davies J. A.), Austin: Landes Bioscience, pp. 156171.
  • Kamakura, S., Moriguchi, T. & Nishida, E. 1999. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinase. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 2656326571.
  • Kashimata, M. & Gresik, E. W. 1997. Epidermal growth factor system is a physiological regulator of development of the mouse fetal submandibular gland and regulates expression of the α6-integrin subunit. Dev. Dyn. 208, 149161.
  • Kashimata, M., Sayeed, S., Ka, A., Onetti-Muda, A., Sakagami, H., Faraggiana, T. & Gresik, E. W. 2000. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev. Biol. 220, 183196.
  • Kato, Y., Kravchenko, V. V., Tapping, R. I., Han, J., Ulevitch, R. J. & Lee, J. D. 1997. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 70547066.
  • Koyama, N., Kashimata, M., Sakashita, H., Sakagami, H. & Gresik, E. W. 2003. EGF-stimulated signaling by means of PI3K, PLCγ1, and PKC isozymes regulates branching morphogenesis of the fetal mouse submandibular gland. Dev. Dyn. 227, 216226.
  • Koyama, N., Hayashi, T., Ohno, K., Siu, L., Gresik, E. W. & Kashimata, M. 2008. Signaling pathways activated by epidermal growth factor receptor or fibroblast growth factor receptor differentially regulate branching morphogenesis in fetal mouse submandibular glands. Dev. Growth Differ. 50, 565576.
  • Lee, J. D., Ulevitch, R. J. & Han, J. 1995. Primary structure of BMK1: a new mammalian MAP kinase. Biochem. Biophys. Res. Commun. 213, 715724.
  • Lee, K. S., Park, J. H., Lim, H. J. & Park, H. Y. 2011. HB-EGF induces cardiomyocyte hypertrophy via an ERK5-MEF2A-COX2 signaling pathway. Cell. Signal. 23, 11001109.
  • Lewis, T. S., Shapiro, P. S. & Ahn, N. G. 1998. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49139.
  • Li, L., Tatake, R. J., Natarajan, K., Taba, Y., Garin, G., Tai, C., Leung, E., Surapisitchat, J., Yoshizumi, M., Yan, C., Abe, J. & Berk, B. C. 2008. Fluid shear stress inhibits TNF-mediated JNK activation via MEK5-BMK1 in endothelial cells. Biochem. Biophys. Res. Commun. 370, 159163.
  • Melnick, M. & Jaskoll, T. 2000. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit. Rev. Oral Biol. Med. 11, 199215.
  • Miyazaki, Y., Nakanishi, Y. & Hieda, Y. 2004. Tissue interaction mediated by neuregulin-1 and ErbB receptors regulates epithelial morphogenesis of mouse embryonic submandibular gland. Dev. Dyn. 230, 591596.
  • Mody, N., Leitch, J., Armstrong, C., Dixon, J. & Cohen, P. 2001. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 502, 2124.
  • Nakamura, K. & Johnson, G. L. 2003. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J. Biol. Chem. 278, 3698936992.
  • Nogawa, H. & Takahashi, Y. 1991. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development 112, 855861.
  • Obara, Y., Okano, Y., Ono, S., Yamauchi, A., Hoshino, T., Kurose, H. & Nakahata, N. 2008. βγ subunits of Gi/o suppress EGF-induced ERK5 phosphorylation, whereas ERK1/2 phosphorylation is enhanced. Cell. Signal. 20, 12751283.
  • Obara, Y., Yamauchi, A., Takehara, S., Nemoto, W., Takahashi, M., Stork, P. J. & Nakahata, N. 2009. ERK5 activity is required for nerve growth factor-induced neurite outgrowth and stabilization of tyrosine hydroxylase in PC12 cells. J. Biol. Chem. 284, 2356423573.
  • Ostrander, J. H., Daniel, A. R., Lofgren, K., Kleer, C. G. & Lange, C. A. 2007. Breast tumor kinase (protein tyrosine kinase 6) regulates heregulin-induced activation of ERK5 and p38 MAP kinases in breast cancer cells. Cancer Res. 67, 41994209.
  • Patel, V. N., Rebustini, I. T. & Hoffman, M. P. 2006. Salivary gland branching morphogenesis. Differentiation 74, 349364.
  • Pomerance, M., Multon, M. C., Parker, F., Venot, C., Blondeau, J. P., Tocque, B. & Schweighoffer, F. 1998. Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor. J. Biol. Chem. 273, 2430124304.
  • Pozzi, A. & Zent, R. 2011. Extracellular matrix receptors in branched organs. Curr. Opin. Cell Biol. 23, 547553.
  • Rebustini, I. T., Patel, V. N., Stewart, J. S., Layvey, A., Georges-Labouesse, E., Miner, J. H. & Hoffman, M. P. 2007. Laminin α5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through β1 integrin signaling. Dev. Biol. 308, 1529.
  • Ramos-Nino, M. E., Blumen, S. R., Sabo-Attwood, T., Pass, H., Carbone, M., Testa, J. R., Altomare, D. A. & Mossman, B. T. 2008. HGF mediates cell proliferation of human mesothelioma cells through a PI3K/MEK5/Fra-1 pathway. Am. J. Respir. Cell Mol. Biol. 38, 209217.
  • Regan, C. P., Li, W., Boucher, D. M., Spatz, S., Su, M. S. & Kuida, K. 2002. Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. U.S.A. 99, 92489253.
  • Rovida, E., Navari, N., Caligiuri, A., Dello Sbarba, P. D. & Marra, F. 2008. ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells. J. Hepatol. 48, 107115.
  • Sarkozi, R., Miller, B., Pollack, V., Feifel, E., Mayer, G., Sorokin, A. & Schramek, H. 2007. ERK1/2-driven and MKP-mediated inhibition of EGF-induced ERK5 signaling in human proximal tubular cells. J. Cell. Physiol. 211, 88100.
  • Schlessinger, J. & Bar-Sagi, D. 1994. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb. Symp. Quant. Biol. 59, 173179.
  • Schwartz, M. A. & Baron, V. 1999. Interactions between mitogenic stimuli, or a thousand and one connections. Curr. Opin. Cell Biol. 11, 197202.
  • Sohn, S. J., Sarvis, B. K., Cado, D. & Winoto, A. 2002. ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J. Biol. Chem. 277, 4334443351.
  • Spooner, B. S., Thompson-Pletscher, H. A., Stokes, B. & Bassett, K. E. 1986. Extracellular matrix involvement in epithelial branching morphogenesis. In: Developmental Biology, A Comprehensive Synthesis. Vol. 3. The Cell Surface in Development and Cancer. (ed. M Steinberg), New York: Plenum Press, pp. 223258.
  • Steinberg, Z., Myers, C., Heim, V. M., Lathrop, C. A., Rebustini, I. T., Stewart, J. S., Larsen, M. & Hoffman, M. P. 2005. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 132, 12231234.
  • Sun, W., Kesavan, K., Schaefer, B. C., Garrington, T. P., Ware, M., Johnson, N. L., Gelfand, E. W. & Johnson, G. L. 2001. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J. Biol. Chem. 276, 50935100.
  • Tatake, R. J., O'Neill, M. M., Kennedy, C. A., Wayne, A. L., Jakes, S., Wu, D., Kugler, S. Z. Jr, Kashem, M. A., Kaplita, P. & Snow, R. J. 2008. Identification of pharmacological inhibitors of the MEK5/ERK5 pathway. Biochem. Biophys. Res. Commun. 377, 120125.
  • Tucker, A. S. 2007. Salivary gland development. Semin. Cell Dev. Biol. 18, 237244.
  • Ullrich, A. & Schlessinger, J. 1990. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203212.
  • Umeda, Y., Miyazaki, Y., Shiinoki, H., Higashiyama, S., Nakanishi, Y. & Hieda, Y. 2001. Involvement of heparin-binding EGF like growth factor and its processing by metalloproteinase in early epithelial morphogenesis of the submandibular gland. Dev. Biol. 237, 202211.
  • Yamamoto, S., Fukumoto, E., Yoshizaki, K., Iwamoto, T., Yamada, A., Tanaka, K., Suzuki, H., Aizawa, S., Arakaki, M., Yuasa, K., Oka, K., Chai, Y., Nonaka, K. & Fukumoto, S. 2008. Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression. J. Biol. Chem. 283, 2313923149.
  • Yan, L., Carr, J., Ashby, P. R., Murry-Tait, V., Thompson, C. & Arthur, J. S. 2003. Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev. Biol. 3, 11.
  • Yuste, L., Montero, J. C., Esparis-Ogando, A. & Pandiella, A. 2005. Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin. Cancer Res. 65, 68016810.
  • Xu, B. E., Stippec, S., Lenertz, L., Lee, B. H., Zhang, W., Lee, Y. K. & Cobb, M. H. 2004. WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J. Biol. Chem. 279, 78267831.
  • Zhou, G., Bao, Z. Q. & Dixon, J. E. 1995. Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270, 1266512669.