SEARCH

SEARCH BY CITATION

References

  • Avidan, S. 2004. Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26, 10641072.
  • Ballard, D. & Brown, C. 1982. Computer Vision. Prentice Hall, Englewood Cliffs, NJ.
  • Bay, H., Ess, A., Tuytelaars, T. & Gool, L. V. 2006. SURF: speeded-up robust features. Proc. European Conference on Computer Vision, pp. 404417.
  • Beauchemin, S. S. & Barron, J. L. 1995. The computation of optical flow. ACM Comput. Surv. 27, 433466.
  • Berclaz, J., Fleuret, F., Turetken, E. & Fua, P. 2011. Multiple object tracking using K-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 18061819.
  • Bise, R., Yin, Z. & Kanade, T. 2011. Reliable cell tracking by global data association. IEEE International Symposium on Biomedical Imaging, pp. 10041010.
  • Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer-Verlag, Springer-Verlag New York, Secaucus, NJ.
  • Coelho, L. P., Shariff, A. & Murphy, R. F. 2009. Nuclear segmentation in microscope cell images: A hand-segmented dataset and comparison of algorithms. Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging (ISBI 2009), pp. 518521.
  • Danuser, G. 2011. Computer vision in cell biology. Cell 147, 973978.
  • Duda, R. O., Hart, P. E. & Stork, D. G. 2000. Pattern Classification. Wiley-Interscience, New York
  • Fischler, M. A. & Bolles, R. C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381395.
  • Glasbey, C. A. & Mardia, K. V. 1998. A review of image-warping methods. J. Appl. Stat. 5, 155171.
  • Wolberg, G. 1990. Digital Image Warping. IEEE Computer Society, Los Alamitos, CA, USA.
  • Gonzales, R. C. & Woods, R. E. 2007. Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA.
  • Horn, B. 1986. Robot Vision. MIT Press, Cambridge, MA.
  • Jain, A. K., Duin, R. P. W. & Mao, J. 2000. Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 437.
  • Jain, A. K., Murty, M. N. & Flynn, P. J. 1999. Data clustering: a review. ACM Comput. Surv. 31, 264323.
  • Jain, A. K., Zhong, Y. & Dubuisson-Jolly, M.-P. 1998. Deformable template models: a review. Signal Process. 71, 109129.
  • Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S. L. & Danuser, G. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695702.
  • Kanade, T., Yin, Z., Bise, R., Huh, S., Eom, S., Sandbothe, M. & Chen, M. 2011. Cell image analysis: algorithms, system and applications. IEEE Workshop on Applications of Computer Vision (WACV).
  • Kass, M., Witkin, A. & Terzopoulos, D. 1998. Snakes: active contour models. Int. J. Comput. Vision 1, 321331.
  • McInerney, T. & Terzopoulos, D. 1996. Deformable models in medical image analysis: a survey. Med. Image Anal. 1, 91108.
  • Mikolajczyk, K. & Schmid, C. 2005. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 16151630.
  • Milanfar, P. 2013. A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal Process. Mag. 30, 106128.
  • Parthenis, K., Metaxaki-Kossionides, C. & Dimitriadi, B. 1989. An automatic computer vision system for blood analysis. Microprocess. Microprogramm. 28, 243246.
  • Peng, H. 2008. Bioimage informatics: a new area of engineering biology. Bioinformatics 24, 18271836.
  • Redert, A., Hendriks, E. & Biemond, J. 1999. Correspondence estimation in image pairs. IEEE Signal Process. Mag. 16, 2946.
  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671675.
  • Shamir, L., Delaney, J. D., Orlov, N., Eckley, D. D. & Goldberg, I. G. 2010. Pattern recognition software and techniques for biological image analysis. PLoS Comput. Biol. 6, 110.
  • Smal, I., Draegestein, K., Galjart, N., Niessen, W. & Meijering, E. 2008. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. IEEE Trans. Med. Imaging 27, 789804.
  • Swedlow, J. R., Goldberg, I. G., Eliceiri, K. W. & the OME Consortium. 2009. Bioimage informatics for experimental biology. Annu. Rev. Biophys. 38, 327346.
  • Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M. & Rother, C. 2008. A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30, 10681080.
  • Torralba, A., Fergus, R. & Freeman, W. T. 2008. 80 Million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30, 19581970.
  • Trier, Ø. D., Jain, A. K. & Taxt, T. 1996. Feature extraction methods for character recognition – a survey. Pattern Recogn. 29, 641662.
  • Uchida, S. & Sakoe, H. 2005. A survey of elastic matching techniques for handwritten character recognition. IEICE Transactions on Information & Systems, E88-D, 8, 17811790.
  • Yang, F., Mackey, M. A., Ianzini, F., Gallardo, G. & Sonka, M. 2005. Cell segmentation, tracking, and mitosis detection using temporal context. Lect. Notes Comput. Sci. (Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005), 3749, 302309.
  • Yilmaz, A., Javed, O. & Shah, M. 2006. Object tracking: a survey. ACM Comput. Surv. 38, Article 13.
  • Zitová, B. & Flusser, J. 2003. Image registration methods: a survey. Image Vis. Comput. 21, 9771000.