SEARCH

SEARCH BY CITATION

References

  • Abbe, E. 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Wilhelm Roux Arch Entwickl Mech Org 9, 413418.
  • Ando, R., Flors, C., Mizuno, H., Hofkens, J. & Miyawaki, A. 2007. Highlighted generation of fluorescence signals using simultaneous two-color irradiation on Dronpa mutants. Biophys. J. 92, L97L99.
  • Ando, R., Hama, H., Yamamoto, M., Mizuno, H. & Miyawaki, A. 2002. An optical marker based on the UV-induced green- to-red photoconversion of a fluorescent protein. PNAS 99, 1265112656.
  • Ando, R., Mizuno, H. & Miyawaki, A. 2004. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 13701373.
  • Andresen, M., Stiel, A. C., Fölling, J., Wenzel, D., Schönle, A., Egner, A., Eggeling, C., Hell, S. W. & Jakobs, S. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26, 10351040.
  • Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. 2011. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678.
  • Aramaki, S. & Hatta, K. 2006. Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev. Dyn. 235, 21922199.
  • Bailey, B., Farkas, D. L., Taylor, D. L. & Lanni, F. 1993. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366(6450), 448.
  • Baker, S. M., Buckheit, R. W. & Falk, M. M. 2010. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol. 11, 15.
  • Bates, M., Dempsey, G. T., Chen, K. H. & Zhuang, X. 2012. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. ChemPhysChem 13, 99107.
  • Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. & Hess, H. F. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 16421645.
  • Borneleth, L., Satzler, K., Eils, R. & Cremer, C. 1998. High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. 1998. J. Microsc. 189, 118136.
  • Brakemann, T., Stiel, A. C., Weber, G., Andresen, M., Testa, I., Grotjohann, T., Leutenegger, M., Plessmann, U., Urlaub, H., Eggeling, C., Wahl, M. C., Hell, S. W. & Jakobs, S. 2011. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29, 942947.
  • Brakemann, T., Weber, G., Andresen, M., Groenhof, G., Stiel, A. C., Trowitzsch, S., Eggeling, C., Grubmüller, H., Hell, S. W., Wahl, M. C. & Jakobs, S. 2010. Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J. Biol. Chem. 285, 1460314609.
  • Chang, H., Zhang, M., Ji, W., Chen, J., Zhang, Y., Liu, B., Lu, J., Zhang, J., Xu, P. & Xu, T. 2012. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc. Natl Acad. Sci. USA 109, 44554460.
  • Chudakov, D. M., Belousov, V. V., Zaraisky, A. G., Novoselov, V. V., Staroverov, D. B., Zorov, D. B., Lukyanov, S. & Lukyanov, K. 2003. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21, 191194.
  • Chudakov, D. M., Lukyanov, S. & Lukyanov, K. 2007a. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat. Protoc. 2, 20242032.
  • Chudakov, D. M., Lukyanov, S. & Lukyanov, K. A. 2007b. Using photoactivatable fluorescent protein Dendra2 to track protein movement. BioTechniques 42, 553557.
  • Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 11031163.
  • Chudakov, D. M., Verkhusha, V. V., Staroverov, D. B., Souslova, E. A., Lukyanov, S. & Lukyanov, K. 2004. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22, 14351439.
  • Day, R. N. & Davidson, M. W. 2009. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 28872921.
  • Dedecker, P., Mo, G. C. H., Dertinger, T. & Zhang, J. 2012. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl Acad. Sci. USA 109, 1090910914.
  • Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. 2009. Fast, backgroung free, 3-D superresolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 2228722292.
  • Donnert, G., Keller, J., Wurm, C. A., Rizzoli, S. O., Westphal, V., Schönle, A., Jahn, R., Jakobs, S., Eggeling, C. & Hell, S. W. 2007. Two-color far-field fluorescence nanoscopy. Biophys. J. 92, L67L69.
  • Egner, A., Geisler, C., von Middendorff, C., Bock, H., Wenzel, D., Medda, R., Andresen, M., Stiel, A. C., Jakobs, S., Eggeling, C., Schönle, A. & Hell, S. W. 2007. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 32853290.
  • Falk, M. M., Baker, S. M., Gumpert, A. M., Segretain, D. & Buckheit, R. W. 2009. Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles. Mol. Biol. Cell, 20, 33423352.
  • Fernández-Suárez, M. & Ting, A. Y. 2008. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929943.
  • Flynn, K. C., Pak, C. W., Shaw, A. E., Bradke, F. & Bamburg, J. R. 2009. Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev. Neurobiol. 69, 761779.
  • Fujioka, A., Terai, K., Itoh, R. E., Aoki, K., Nakamura, T., Kuroda, S., Nishida, E. & Matsuda, M. 2006. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281, 89178926.
  • Fölling, J., Belov, V., Riedel, D., Schönle, A., Egner, A., Eggeling, C., Bossi, M. & Hell, S. W. 2008a. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9, 321326.
  • Fölling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C. & Hell, S. W. 2008b. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943945.
  • Garini, Y., Vermolen, B. J. & Young, I. T. 2005. From micro to nano: recent advances in high-resolution microscopy. Curr. Opin. Biotechnol. 16, 312.
  • Geissbuehler, S., Dellagiacoma, C. & Lasser, T. 2011. Comparison between SOFI and STORM. Biomed. Opt. Express. 2, 408420.
  • Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. 2006. The fluorescent toolbox for assessing protein location and function. Science 312, 217224.
  • Gray, N. W., Weimer, R. M., Bureau, I. & Svoboda, K. 2006. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370.
  • Grotjohann, T., Testa, I., Leutenegger, M., Bock, H., Urban, N. T., Lavoie-Cardinal, F., Willig, K. I., Eggeling, C., Jakobs, S. & Hell, S. W. 2011. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204208.
  • Gunkel, M., Erdel, F., Rippe, K., Lemmer, P., Kaufmann, R., Hörmann, C., Amberger, R. & Cremer, C. 2009. Dual color localization microscopy of cellular nanostructures. Biotechnol. J. 4, 927938.
  • Gunzenhäuser, J., Olivier, N., Pengo, T. & Manley, S. 2012. Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-Gag Virions. Nano Lett. 12, 47054710.
  • Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., Staroverov, D. B., Chepurnykh, T. V., Fradkov, A. F., Lukyanov, S. & Lukyanov, K. 2006. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461465.
  • Gustafsson, M. G. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 8287.
  • Gustafsson, M. G. L. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 1308113086.
  • Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A. & Hofkens, J. 2005. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl Acad. Sci. USA 102, 95119516.
  • Habuchi, S., Tsutsui, H., Kochaniak, A. B., Miyawaki, A. & van Oijen, A. M. 2008. mKikGR, a monomeric photoswitchable fluorescent protein. PLoS ONE 3, e3944.
  • Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P. & Sauer, M. 2008. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 61726176.
  • Hein, B., Willig, K. I. & Hell, S. W. 2008. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl Acad. Sci. USA 105, 1427114276.
  • Heintzmann, R., Jovin, T. M. & Cremer, C. 2002. Saturated patterned excitation microscopy: a concept for optical resolution improvement. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19, 15991609.
  • Hell, S. W. & Kroug, M. 1995. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl. Phys. B. 60, 495497.
  • Hell, S. W., Stelzer, E. H. K., Lindek, S. & Cremer, C. 1994. Confocal microscopy with an increased detection aperture : type-B 4Pi confocal microscopy. Opt. Lett. 19, 222224.
  • Hell, S. W. & Wichmann, J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780782.
  • Hess, S. T., Girirajan, T. P. K. & Mason, M. D. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 42584272.
  • Hirvonen, L. M., Wicker, K., Mandula, O. & Heintzmann, R. 2009. Structured illumination microscopy of a living cell. Eur. Biophys. J. 38, 807812.
  • Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 1756517569.
  • Huang, B., Babcock, H. & Zhuang, X. 2010. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 10471058.
  • Huang, B., Wang, W., Bates, M. & Zhuang, X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810813.
  • Widenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Ro, C. & Salih, A. 2004. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl Acad. Sci. USA 101, 1590515910.
  • Izeddin, I., Specht, C. G., Lelek, M., Darzacq, X., Triller, A., Zimmer, C. & Dahan, M. 2011. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6, e15611.
  • Kao, Y., Zhu, X. & Min, W. 2012. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein. Proc. Natl Acad. Sci. USA 109, 32203225.
  • Klar, T. & Hell, S. W. 1999. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954956.
  • Klar, T., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 82068210.
  • Kural, C., Nonet, M. L. & Selvin, P. R. 2009. FIONA on Caenorhabditis elegans. Biochemistry 48, 46634665.
  • Kurokawa, K. & Matsuda, M. 2005. Localized RhoA Activation as a Requirement for the Induction of Membrane Ruffling. Mol. Biol. Cell 2005, 42944303.
  • Lakadamyali, M., Babcock, H., Bates, M., Zhuang, X. & Lichtman, J. 2012. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7, e30826.
  • Lee, S., Yen, J., Lee, A. & Bustamante, C. 2012. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl Acad. Sci. USA 109, 27.
  • Lehmann, M., Rocha, S., Mangeat, B., Blanchet, F., Uji-I, H., Hofkens, J. & Piguet, V. 2011. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog. 7, e1002456.
  • Lippincott-Schwartz, J. & Manley, S. 2009. Putting super-resolution fluorescence microscopy to work. Nat. Methods 6, 2123.
  • Lippincott-Schwartz, J. & Patterson, G. H. 2009. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555565.
  • Lippincott-schwartz, J. & Patterson, G. H. 2008. Fluorescent proteins for photoactivation experiments. Methods Cell Biol. 85, 4561.
  • Lukyanov, K. & Chudakov, D. 2005. Innovation: photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 11, 885891.
  • Lummer, M., Humpert, F., Steuwe, C., Schüttpelz, M., Sauer, M. & Staiger, D. 2011. Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants. Traffic 12, 693702.
  • Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E. & Lippincott-schwartz, J. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 20072009.
  • Matsuda, T., Miyawaki, A. & Nagai, T. 2008. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nat. Methods 5, 339345.
  • McKinney, S. A., Murphy, C. S., Hazelwood, K. L., Davidson, M. W. & Looger, L. L. 2009. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131133.
  • Murray, M. J. & Saint, R. 2007. Photoactivatable GFP resolves Drosophila mesoderm migration behavior. Development 134, 39753983.
  • Nowotschin, S. & Hadjantonakis, A. K. 2009. Photomodulatable fluorescent proteins for imaging cell dynamics and cell fate. Organogenesis 5, 135144.
  • Patterson, G. H. & Lippincott-Schwartz, J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 18731877.
  • Patterson, G. H. & Lippincott-Schwartz, J. 2004. Selective photolabeling of proteins using photoactivatable GFP. Methods 32, 445450.
  • Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A., Galbraith, C. G. & Betzig, E. 2011. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417423.
  • Pletnev, S., Subach, F. V., Dauter, Z., Wlodawer, A. & Verkhusha, V. V. 2012. A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J. Mol. Biol. 417, 144151.
  • Rego, E. H., Shao, L., Macklin, J. J., Winoto, L., Johansson, G. A., Kamps-Hughes, N., Davidson, M. W. & Gustafsson, M. G. L. 2012. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135E143.
  • Rust, M. J., Bates, M. & Zhuang, X. 2006. Sub-diffraction limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793795.
  • Schermelleh, L., Heintzmann, R. & Leonhardt, H. 2010. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165175.
  • Shaner, N. C., Patterson, G. H. & Davidson, M. W. 2007. Advances in fluorescent protein technology. J. Cell Sci. 120, 42474260.
  • Shim, S., Xia, C., Zhong, G., Babcock, H. P., Vaughan, J. C. & Huang, B. 2012. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl Acad. Sci. USA 109, 1397813983.
  • Shroff, H., Galbraith, C. G., Galbraith, J. A., White, H., Gillette, J., Olenych, S., Davidson, M. W. & Betzig, E. 2007. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 2030820313.
  • Stark, D. A. & Kulesa, P. M. 2005. Photoactivatable green fluorescent protein as a single-cell marker in living embryos. Dev. Dyn. 233, 983992.
  • Stepanenko, O. V., Stepanenko, O. V., Shcherbakova, D. M., Kuznetsova, I. M., Turoverov, K. K. & Verkhusha, V. V. 2011. Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques, 51, 313314, 316-318 passim.
  • Stiel, A. C., Andresen, M., Bock, H., Hilbert, M., Schilde, J., Schönle, A., Eggeling, C., Egner, A., Hell, S. W. & Jakobs, S. 2008. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys. J. 95, 29892997.
  • Stiel, A. C., Trowitzsch, S., Weber, G., Andresen, M., Eggeling, C., Hell, S. W., Jakobs, S. & Wahl, M. C. 2007. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402, 3542.
  • Subach, F. V., Patterson, G. H., Manley, S., Gillette, J. M., Lippincott-schwartz, J. & Verkhusha, V. V. 2009. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153160.
  • Subach, F. V., Patterson, G. H., Renz, M., Lippincott-Schwartz, J. & Verkhusha, V. V. 2010a. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J. Am. Chem. Soc. 132, 64816491.
  • Subach, F. V., Zhang, L., Gadella, T. W. J., Gurskaya, N. G., Lukyanov, K. A. & Verkhusha, V. V. 2010b. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem. Biol. 17, 745755.
  • Subach, F. V., Piatkevich, K. D. & Verkhusha, V. V. 2011a. Directed molecular evolution to design advanced red fluorescent proteins. Nat. Methods 8, 10191026.
  • Subach, O. M., Patterson, G. H., Ting, L. M., Wang, Y., Condeelis, J. S. & Verkhusha, V. V. 2011b. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat. Methods 8, 771777.
  • Subach, O. M., Entenberg, D., Condeelis, J. S. & Verkhusha, V. V. 2012. A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics. J. Am. Chem. Soc. 134, 1478914799.
  • Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N. & Miyawaki, A. 2005. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6, 233238.
  • Verkhusha, V. V. & Sorkin, A. 2005. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12, 279285.
  • Wacker, S. A., Oswald, F., Wiedenmann, J. & Knöchel, W. 2007. A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev. Dyn. 236, 473480.
  • Watanabe, T. M., Fukui, S., Jin, T., Fujii, F. & Yanagida, T. 2010. Real-time nanoscopy by using blinking enhanced quantum dots. Biophys. J. 99, L50L52.
  • Weimer, R. M., Hill, T. C., Hamilton, A. M. & Zito, K. 2012. Imaging synaptic protein dynamics using photoactivatable green fluorescent protein. Cold Spring Harb. Protoc. 7, 771777.
  • Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Röcker, C., Salih, A., Spindler, K. D. & Nienhaus, G. U. 2004. EosFP, a fluorescent marker protein with UV inducible green-to-red fluorescence conversion. Proc. Natl Acad. Sci. USA 101, 1590515910.
  • Wiedenmann, J. & Nienhaus, G. U. 2006. Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics. 3(3), 36174.
  • Wilmes, S., Staufenbiel, M., Liße, D., Richter, C. P., Beutel, O., Busch, K. B., Hess, S. T. & Piehler, J. 2012. Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. Angew. Chem. Int. Ed. Engl. 124, 49524955.
  • Wu, B., Piatkevich, K. D., Lionnet, T., Singer, R. H. & Verkhusha, V. V. 2011. Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr. Opin. Cell Biol. 23, 310317.
  • Young, C. L., Raden, D. L., Caplan, J. L., Czymmek, K. J. & Robinson, A. S. 2012. Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast. Yeast 29, 119136.
  • Zanacchi, F. C., Lavagnino, Z., Donnorso, M. P., Bue, A. D., Furia, L., Faretta, M. & Diaspro, A. 2011. Live 3-D super-resolution imaging in thick biological samples. Nat. Methods 8, 10471050.
  • Zhang, L., Gurskaya, N., Merzlyak, E., Staroverov, D., Mudrik, N., Samarkina, O., Vinokurov, L., Lukyanov, S. & Lukyanov, K. 2007. Method for real-time monitoring of protein degradation at the single cell level. Biotechniques 42, 446450.
  • Zhang, M., Chang, H., Zhang, Y., Yu, J., Wu, L., Ji, W., Chen, J., Liu, B., Lu, J., Liu, Y., Zhang, J., Xu, P. & Xu, T. 2012. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 611.
  • Zhu, L., Zhang, W., Elnatan, D. & Huang, B. 2012. Faster STORM using compressed sensing. Nat. Methods 9, 721723.