SEARCH

SEARCH BY CITATION

Keywords:

  • age;
  • fibroblast growth factor 2;
  • glypican-1;
  • satellite cells;
  • syndecan-4

Myogenic satellite cells are heterogeneous multipotential stem cells that are required for muscle repair, maintenance, and growth. The membrane-associated heparan sulfate proteoglycans syndecan-4 and glypican-1 differentially regulate satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) signal transduction, and expression of the myogenic regulatory factors MyoD and myogenin. The objective of the current study was to determine the effect of age on syndecan-4 and glypican-1 satellite cell populations, proliferation, differentiation, FGF2 responsiveness, and expression of syndecan-4, glypican-1, MyoD, and myogenin using satellite cells isolated from the pectoralis major muscle of 1-day-old, 7-week-old and 16-week-old turkeys. Proliferation was significantly reduced in the 16-week-old satellite cells, while differentiation was decreased in the 7-week-old and the 16-week-old cells beginning at 48 h of differentiation. Fibroblast growth factor 2 responsiveness was highest in the 1-day-old and 7-week-old cells during proliferation; during differentiation there was an age-dependent response to FGF2. Syndecan-4 and glypican-1 satellite cell populations decreased with age, but syndecan-4 and glypican-1 were differentially expressed with age during proliferation and differentiation. MyoD and myogenin mRNA expression was significantly decreased in 16-week-old cells compared to the 1-day-old and 7-week-old cells. MyoD and myogenin protein expression was higher during proliferation in the 16-week-old cells and decreased with differentiation. These data demonstrate an age-dependent effect on syndecan-4 and glypican-1 satellite cell subpopulations, which may be associated with age-related changes in proliferation, differentiation, FGF2 responsiveness, and the expression of the myogenic regulatory factors MyoD and myogenin.