SEARCH

SEARCH BY CITATION

References

  • Ansai, S., Sakuma, T., Yamamoto, T., Ariga, H., Uemura, N., Takahashi, R. & Kinoshita, M. 2013. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193, 739749.
  • Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T.L., Starker, C.G., Krug, R.G. 2nd., Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., Fahrenkrug, S.C., Carlson, D.F., Voytas, D.F., Clark, K.J., Essner, J.J. & Ekker, S.C. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114118.
  • Ben Shoham, A., Malkinson, G., Krief, S., Shwartz, Y., Ely, Y., Ferrara, N., Yaniv, K. & Zelzer, E. 2012. S1P1 inhibits sprouting angiogenesis during vascular development. Development 139, 38593869.
  • Beumer, K. J., Trautman, J. K., Bozas, A., Liu, J.L., Rutter, J., Gall, J.G. & Carroll, D. 2008. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc. Natl Acad. Sci. USA 105, 1982119826.
  • Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188, 773782.
  • Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J. & Voytas, D.F. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82.
  • Chen, J., Zhang, X., Wang, T., Li, Z., Guan, G. & Hong, Y. 2012. Efficient detection, quantification and enrichment of subtle allelic alterations. DNA Res. 19, 423433.
  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. & Zhang, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819823.
  • Cradick, T. J., Fine, E. J., Antico, C. J. & Bao, G. 2013. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. doi: 10.1093/nar/gkt714.
  • Dahlem, T. J., Hoshijima, K., Jurynec, M. J., Gunther, D., Starker, C.G., Locke, A.S., Weis, A.M., Voytas, D.F. & Grunwald, D.J. 2012. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861.
  • Dawid, I. B. 2004. Developmental biology of zebrafish. Ann. N. Y. Acad. Sci. 1038, 8893.
  • Fukui, H., Hanaoka, R. & Kawahara, A. 2009. Noncanonical activity of seryl-tRNA synthetase is involved in vascular development. Circ. Res. 104, 12531259.
  • Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C. & Nüsslein-Volhard, C. 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 136.
  • Hisano, Y., Kobayashi, N., Yamaguchi, A. & Nishi, T. 2012a. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS ONE 7, e38941.
  • Hisano, Y., Nishi, T. & Kawahara, A. 2012b. The functional roles of S1P in immunity. J. Biochem. 152, 305311.
  • Hisano, Y., Ota, S., Arakawa, K., Kono, N., Oshita, K., Sakuma, T., Tomita, M., Yamamoto, T., Okada, Y. & Kawahara, A. 2013a. Quantitative assay for TALEN activity at endogenous genomic loci. Biol. Open 2, 363367.
  • Hisano, Y., Ota, S., Takada, S. & Kawahara, A. 2013b. Functional cooperation of spns2 and fibronectin in cardiac and lower jaw development. Biol. Open 2, 789794.
  • Hla, T., Venkataraman, K. & Michaud, J. 2008. The vascular S1P gradient-cellular sources and biological significance. Biochim. Biophys. Acta 1781, 477482.
  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J.C., Koch, R., Rauch, G.J., White, S., Chow, W., Kilian, B., Quintais, L.T., Guerra-Assunção, J.A., Zhou, Y., Gu, Y., Yen, J., Vogel, J.H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S.F., Laird, G.K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Eliott, D., Threadgold, G., Harden, G., Ware, D., Mortimer, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M. & Glithero, R., Howden, P., Barker, N., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C.M., Ersan-Ürün, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberländer, M., Rudolph-Geiger, S., Teucke, M., Osoegawa, K., Zhu, B., Rapp, A., Widaa, S., Langford, C., Yang, F., Carter, N.P., Harrow, J., Ning, Z., Herrero, J., Searle, S.M., Enright, A., Geisler, R., Plasterk, R.H., Lee, C., Westerfield, M., de Jong, P.J., Zon, L.I., Postlethwait, J.H., Nüsslein-Volhard, C., Hubbard, T.J., Roest Crollius, H., Rogers, J. & Stemple, D.L. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498503.
  • Joung, J. K. & Sander, J. D. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 4955.
  • Kawahara, A., Nishi, T., Hisano, Y., Fukui, H., Yamaguchi, A. & Mochizuki, N. 2009. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524527.
  • Kim, H. J., Lee, H. J., Kim, H., Cho, S.W. & Kim, J.S. 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 12791288.
  • Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D. Y. 2000. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192195.
  • Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30, 390392.
  • Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. & Church, G.M. 2013. RNA-guided human genome engineering via Cas9. Science, 339, 823826.
  • Mashimo, T., Kaneko, T., Sakuma, T., Kobayashi, J., Kunihiro, Y., Voigt, B., Yamamoto, T. & Serikawa, T. 2013. Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci. Rep. 3, 1253.
  • Mendelson, K., Zygmunt, T., Torres-Vazquez, J., Evans, T. & Hla, T. 2013. Sphingosine 1-phosphate receptor signaling regulates proper embryonic vascular patterning. J. Biol. Chem. 288, 21432156.
  • Nasevicius, A. & Ekker, S. C. 2000. Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216220.
  • Nishi, T., Kobayashi, N., Hisano, Y., Kawahara, A. & Yamaguchi, A.. 2013. Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim. Biophys. Acta. (in press).
  • Osborne, N., Brand-Arzamendi, K., Ober, E. A., Jin, S.W., Verkade, H., Holtzman, N.G., Yelon, D. & Stainier, D.Y. 2008. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr. Biol. 18, 18821888.
  • Ota, S., Hisano, Y., Muraki, M., Hoshijima, K., Dahlem, T.J., Grunwald, D.J., Okada, Y. & Kawahara, A. 2013. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18, 450458.
  • Robu, M. E., Larson, J. D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A. & Ekker, S.C. 2007. P53 activation by knockdown technologies. PLoS Genet. 3, e78.
  • Sakuma, T., Hosoi, S., Woltjen, K., Suzuki, K., Kashiwagi, K., Wada, H., Ochiai, H., Miyamoto, T., Kawai, N., Sasakura, Y., Matsuura, S., Okada, Y., Kawahara, A., Hayashi, S. & Yamamoto, T. 2013. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18, 315326.
  • Spiegel, S. & Milstien, S. 2011. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403415.
  • Thisse, C. & Zon, L. I. 2002. Organogenesis–heart and blood formation from the zebrafish point of view. Science 295, 457462.
  • Tobia, C., Chiodelli, P., Nicoli, S., Dell'era, P., Buraschi, S., Mitola, S., Foglia, E., van Loenen, P.B., Alewijnse, A.E. & Presta, M. 2012. Sphingosine-1-phosphate receptor-1 controls venous endothelial barrier integrity in zebrafish. Arterioscler. Thromb. Vasc. Biol. 32, e104e116.
  • Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. 2002. Target-selected inactivation of the zebrafish rag1 gene. Science, 297, 99102.
  • Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., Zhu, Z., Zhang, B. & Lin, S. 2013. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods 10, 329331.