SEARCH

SEARCH BY CITATION

References

  • Altmann, C. R., Chow, R. L., Lang, R. A. & Hemmati-Brivanlou, A. 1997. Lens induction by Pax-6 in Xenopus laevis. Dev. Biol. 185, 119123.
  • Ashery-Padan, R., Marquardt, T., Zhou, X. & Gruss, P. 2000. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14, 27012711.
  • Baird, S. E., Fitch, D. H., Kassem, I. A. & Emmons, S. W. 1991. Pattern formation in the nematode epidermis: determination of the arrangement of peripheral sense organs in the C. elegans male tail. Development 113, 515526.
  • Bassnett, S. 1995. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest. Ophthalmol. Vis. Sci. 36, 17931803.
  • Bassnett, S. 2009. On the mechanism of organelle degradation in the vertebrate lens. Exp. Eye Res. 88, 133139.
  • Bassnett, S. & Beebe, D. C. 1992. Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev. Dyn. 194, 8593.
  • Bassnett, S. & Mataic, D. 1997. Chromatin degradation in differentiating fiber cells of the eye lens. J. Cell Biol. 137, 3749.
  • Bassnett, S., Shi, Y. & Vrensen, G. F. 2011. Biological glass: structural determinants of eye lens transparency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 12501264.
  • Beebe, D. C., Feagans, D. E. & Jebens, H. A. 1980. Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl Acad. Sci. USA 77, 490493.
  • Beebe, D. C., Silver, M. H., Belcher, K. S., Van Wyk, J. J., Svoboda, M. E. & Zelenka, P. S. 1987. Lentropin, a protein that controls lens fiber formation, is related functionally and immunologically to the insulin-like growth factors. Proc. Natl Acad. Sci. USA 84, 23272330.
  • Blankenship, T., Bradshaw, L., Shibata, B. & Fitzgerald, P. 2007. Structural specializations emerging late in mouse lens fiber cell differentiation. Invest. Ophthalmol. Vis. Sci. 48, 32693276.
  • Blixt, A., Mahlapuu, M., Aitola, M., Pelto-Huikko, M., Enerback, S. & Carlsson, P. 2000. A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 14, 245254.
  • Boswell, B. A., Overbeek, P. A. & Musil, L. S. 2008. Essential role of BMPs in FGF-induced secondary lens fiber differentiation. Dev. Biol. 324, 202212.
  • Bray, S. J. 2006. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678689.
  • Brownell, I., Dirksen, M. & Jamrich, M. 2000. Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis 27, 8193.
  • Cain, S., Martinez, G., Kokkinos, M. I., Turner, K., Richardson, R. J., Abud, H. E., Huelsken, J., Robinson, M. L. & de Iongh, R. U. 2008. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev. Biol. 321, 420433.
  • Chamberlain, C. G. & McAvoy, J. W. 1987. Evidence that fibroblast growth factor promotes lens fibre differentiation. Curr. Eye Res. 6, 11651169.
  • Chamberlain, C. G. & McAvoy, J. W. 1989. Induction of lens fibre differentiation by acidic and basic fibroblast growth factor (FGF). Growth Factors 1, 125134.
  • Chen, Y., Stump, R. J., Lovicu, F. J., Shimono, A. & McAvoy, J. W. 2008. Wnt signaling is required for organization of the lens fiber cell cytoskeleton and development of lens three-dimensional architecture. Dev. Biol. 324, 161176.
  • Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P. N. & Lovell-Badge, R. 1996. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509520.
  • Colvin, J. S., Feldman, B., Nadeau, J. H., Goldfarb, M. & Ornitz, D. M. 1999. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev. Dyn. 216, 7288.
  • Connor, T. B., Roberts, A. B., Sporn, M. B., Daniekpour, D., Dart, L. L., Michels, R. G., De Bustros, S., Enger, C., Kato, H. & Lansing, M. 1989. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J. Clin. Invest. 83, 16611666.
  • Coulombre, J. L. & Coulombre, A. J. 1963. Lens development: fiber elongation and lens orientation. Science 142, 14891490.
  • Dawes, L. J., Sugiyama, Y., Lovicu, F. J., Harris, C. G., Shelley, E. J. & McAvoy, J. W. 2014. Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism. Dev. Biol. 385, 291303.
  • Dawes, L. J., Sugiyama, Y., Tanedo, A. S., Lovicu, F. J. & McAvoy, J. W. 2013. Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest. Ophthalmol. Vis. Sci. 54, 15821590.
  • De Arcangelis, A., Mark, M., Kreidberg, J., Sorokin, L. & Georges-Labouesse, E. 1999. Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development 126, 39573968.
  • de Iongh, R. U., Chen, Y., Kokkinos, M. I. & McAvoy, J. W. 2004. BMP and activin receptor expression in lens development. Mol. Vis. 10, 566576.
  • de Iongh, R. U., Gordon-Thomson, C., Chamberlain, C. G., Hales, A. M. & McAvoy, J. W. 2001a. Tgfbeta receptor expression in lens: implications for differentiation and cataractogenesis. Exp. Eye Res. 72, 649659.
  • de Iongh, R. U., Lovicu, F. J., Chamberlain, C. G. & McAvoy, J. W. 1997. Differential expression of fibroblast growth factor receptors during rat lens morphogenesis and growth. Invest. Ophthalmol. Vis. Sci. 38, 16881699.
  • de Iongh, R. U., Lovicu, F. J., Hanneken, A., Baird, A. & McAvoy, J. W. 1996. FGF receptor-1 (flg) expression is correlated with fibre differentiation during rat lens morphogenesis and growth. Dev. Dyn. 206, 412426.
  • de Iongh, R. U., Lovicu, F. J., Overbeek, P. A., Schneider, M. D., Joya, J., Hardeman, E. D. & McAvoy, J. W. 2001b. Requirement for TGFbeta receptor signaling during terminal lens fiber differentiation. Development 128, 39954010.
  • Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. 1996. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911921.
  • Donner, A. L., Ko, F., Episkopou, V. & Maas, R. L. 2007. Pax6 is misexpressed in Sox1 null lens fiber cells. Gene Expr. Patterns 7, 606613.
  • Duncan, M. K., Cui, W., Oh, D. J. & Tomarev, S. I. 2002. Prox1 is differentially localized during lens development. Mech. Dev. 112, 195198.
  • Duncan, M. K., Kozmik, Z., Cveklova, K., Piatigorsky, J. & Cvekl, A. 2000. Overexpression of PAX6(5a) in lens fiber cells results in cataract and upregulation of (alpha)5(beta)1 integrin expression. J. Cell Sci. 113(Pt 18), 31733185.
  • Faber, S. C., Robinson, M. L., Makarenkova, H. P. & Lang, R. A. 2002. Bmp signaling is required for development of primary lens fiber cells. Development 129, 37273737.
  • Fischer, A. J., Omar, G., Walton, N. A., Verrill, T. A. & Unson, C. G. 2005. Glucagon-expressing neurons within the retina regulate the proliferation of neural progenitors in the circumferential marginal zone of the avian eye. J. Neurosci. 25, 1015710166.
  • Fischer, A. J., Ritchey, E. R., Scott, M. A. & Wynne, A. 2008. Bullwhip neurons in the retina regulate the size and shape of the eye. Dev. Biol. 317, 196212.
  • Garcia, C. M., Yu, K., Zhao, H., Ashery-Padan, R., Ornitz, D. M., Robinson, M. L. & Beebe, D. C. 2005. Signaling through FGF receptor-2 is required for lens cell survival and for withdrawal from the cell cycle during lens fiber cell differentiation. Dev. Dyn. 233, 516527.
  • Glaser, T., Walton, D. S. & Maas, R. L. 1992. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 2, 232239.
  • Goudreau, G., Petrou, P., Reneker, L. W., Graw, J., Loster, J. & Gruss, P. 2002. Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc. Natl Acad. Sci. USA 99, 87198724.
  • Grainger, R. M. 1992. Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet. 8, 349355.
  • Grainger, R. M. 1996. New perspectives on embryonic lens induction. Semin. Cell Dev. Biol. 7, 149155.
  • Grainger, R. M., Mannion, J. E., Cook, T. L. Jr & Zygar, C. A. 1997. Defining intermediate stages in cell determination: acquisition of a lens-forming bias in head ectoderm during lens determination. Dev. Genet. 20, 246257.
  • Greiling, T. M. & Clark, J. I. 2008. The transparent lens and cornea in the mouse and zebra fish eye. Semin. Cell Dev. Biol. 19, 9499.
  • Greiling, T. M. & Clark, J. I. 2009. Early lens development in the zebrafish: a three-dimensional time-lapse analysis. Dev. Dyn. 238, 22542265.
  • Grimm, C., Chatterjee, B., Favor, J., Immervoll, T., Loster, J., Klopp, N., Sandulache, R. & Graw, J. 1998. Aphakia (ak), a mouse mutation affecting early eye development: fine mapping, consideration of candidate genes and altered Pax6 and Six3 gene expression pattern. Dev. Genet. 23, 299316.
  • Grindley, J. C., Davidson, D. R. & Hill, R. E. 1995. The role of Pax-6 in eye and nasal development. Development 121, 14331442.
  • Grocott, T., Johnson, S., Bailey, A. P. & Streit, A. 2010. Neural crest cells organize the eye via TGF-beta and canonical Wnt signalling. Nat. Commun. 2, 265.
  • Halder, G., Callaerts, P. & Gehring, W. J. 1995. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 17881792.
  • Hales, A. M., Chamberlain, C. G. & McAvoy, J. W. 1995. Cataract induction in lenses cultured with transforming growth factor-beta. Invest. Ophthalmol. Vis. Sci. 36, 17091713.
  • Hales, A. M., Chamberlain, C. G., Murphy, C. R. & McAvoy, J. W. 1997. Estrogen protects lenses against cataract induced by transforming growth factor-beta (TGFbeta). J. Exp. Med. 185, 273280.
  • Hartung, H., Feldman, B., Lovec, H., Coulier, F., Birnbaum, D. & Goldfarb, M. 1997. Murine FGF-12 and FGF-13: expression in embryonic nervous system, connective tissue and heart. Mech. Dev. 64, 3139.
  • Hill, R. E., Favor, J., Hogan, B. L., Ton, C. C., Saunders, G. F., Hanson, I. M., Prosser, J., Jordan, T., Hastie, N. D. & van Heyningen, V. 1991. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522525.
  • Ho, H. Y., Chang, K. H., Nichols, J. & Li, M. 2009. Homeodomain protein Pitx3 maintains the mitotic activity of lens epithelial cells. Mech. Dev. 126, 1829.
  • Hosler, M. R., Wang-Su, S. T. & Wagner, B. J. 2006. Role of the proteasome in TGF-beta signaling in lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 47, 20452052.
  • Imai, F., Yoshizawa, A., Fujimori-Tonou, N., Kawakami, K. & Masai, I. 2010. The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish. Development 137, 32573268.
  • Ishibashi, S. & Yasuda, K. 2001. Distinct roles of maf genes during Xenopus lens development. Mech. Dev. 101, 155166.
  • Jampel, H. D., Roche, N., Stark, W. J. & Roberts, A. B. 1990. Transforming growth factor-beta in human aqueous humor. Curr. Eye Res. 9, 963969.
  • Jarrin, M., Pandit, T. & Gunhaga, L. 2012. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells. Mol. Biol. Cell 23, 32663274.
  • Jia, J., Lin, M., Zhang, L., York, J. P. & Zhang, P. 2007. The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression. Mol. Cell. Biol. 27, 72367247.
  • Jordan, T., Hanson, I., Zaletayev, D., Hodgson, S., Prosser, J., Seawright, A., Hastie, N. & van Heyningen, V. 1992. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1, 328332.
  • Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R. & Kondoh, H. 1998. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 25212532.
  • Kawauchi, S., Takahashi, S., Nakajima, O., Ogino, H., Morita, M., Nishizawa, M., Yasuda, K. & Yamamoto, M. 1999. Regulation of lens fiber cell differentiation by transcription factor c-Maf. J. Biol. Chem. 274, 1925419260.
  • Kenyon, K. L., Moody, S. A. & Jamrich, M. 1999. A novel fork head gene mediates early steps during Xenopus lens formation. Development 126, 51075116.
  • Kim, J. I., Li, T., Ho, I. C., Grusby, M. J. & Glimcher, L. H. 1999. Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc. Natl Acad. Sci. USA 96, 37813785.
  • Kitaoka, T., Aotaki-Keen, A. E. & Hjelmeland, L. M. 1994. Distribution of FGF-5 in the rhesus macaque retina. Invest. Ophthalmol. Vis. Sci. 35, 31893198.
  • Kobayashi, M., Toyama, R., Takeda, H., Dawid, I. B. & Kawakami, K. 1998. Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125, 29732982.
  • Kuszak, J. R. & Costello, M. J. 2004. The structure of the vertebrate lens. In Develoment of the ocular lens (eds. F. J. Lovicu & M. L. Robinson), pp. 71118, Cambrige University Press: New York.
  • Kuszak, J. R., Sivak, J. G. & Weerheim, J. A. 1991. Lens optical quality is a direct function of lens sutural architecture. Invest. Ophthalmol. Vis. Sci. 32, 21192129.
  • Kuszak, J. R., Zoltoski, R. K. & Tiedemann, C. E. 2004. Development of lens sutures. Int. J. Dev. Biol. 48, 889902.
  • Land, M. F. 2012. The evolution of lenses. Ophthalmic Physiol. Opt. 32, 449460.
  • Land, M. F. & Nilsson, D.-E. 2012. Animal eyes. Oxford University Press: Oxford.
  • Le, T. T., Conley, K. W. & Brown, N. L. 2009. Jagged 1 is necessary for normal mouse lens formation. Dev. Biol. 328, 118126.
  • Leonard, M., Zhang, L., Zhai, N., Cader, A., Chan, Y., Nowak, R. B., Fowler, V. M. & Menko, A. S. 2011. Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens. Dev. Biol. 349, 363377.
  • Liu, J., Hales, A. M., Chamberlain, C. G. & McAvoy, J. W. 1994. Induction of cataract-like changes in rat lens epithelial explants by transforming growth factor beta. Invest. Ophthalmol. Vis. Sci. 35, 388401.
  • Louvi, A. & Artavanis-Tsakonas, S. 2006. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93102.
  • Lovicu, F. J., Steven, P., Saika, S. & McAvoy, J. W. 2004. Aberrant lens fiber differentiation in anterior subcapsular cataract formation: a process dependent on reduced levels of Pax6. Invest. Ophthalmol. Vis. Sci. 45, 19461953.
  • Lyu, J. & Joo, C. K. 2004. Wnt signaling enhances FGF2-triggered lens fiber cell differentiation. Development 131, 18131824.
  • Marcantonio, J. M. & Reddan, J. 2004. TGF beta(2) influences alpha5-beta1 integrin distribution in human lens. Exp. Eye Res. 79, 437442.
  • Marcelle, C., Eichmann, A., Halevy, O., Breant, C. & Le Douarin, N. M. 1994. Distinct developmental expression of a new avian fibroblast growth factor receptor. Development 120, 683694.
  • Martinez, G., Wijesinghe, M., Turner, K., Abud, H. E., Taketo, M. M., Noda, T., Robinson, M. L. & de Iongh, R. U. 2009. Conditional mutations of beta-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation. Invest. Ophthalmol. Vis. Sci. 50, 47944806.
  • Mathias, R. T., White, T. W. & Gong, X. 2010. Lens gap junctions in growth, differentiation, and homeostasis. Physiol. Rev. 90, 179206.
  • Matsuo, T., Osumi-Yamashita, N., Noji, S., Ohuchi, H., Koyama, E., Myokai, F., Matsuo, N., Taniguchi, S., Doi, H., Iseki, S., Ninomiya, Y., Fujiwara, M., Watanabe, T. & Eto, K. 1993. A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet. 3, 299304.
  • McAvoy, J. W. 1978. Cell division, cell elongation and the co-ordination of crystallin gene expression during lens morphogenesis in the rat. J. Embryol. Exp. Morphol. 45, 271281.
  • McAvoy, J. W. 1980. Beta- and gamma-crystallin synthesis in rat lens epithelium explanted with neural retinal. Differentiation 17, 8591.
  • McAvoy, J. W. & Fernon, V. T. 1984. Neural retinas promote cell division and fibre differentiation in lens epithelial explants. Curr. Eye Res. 3, 827834.
  • Millan, F. A., Denhez, F., Kondaiah, P. & Akhurst, R. J. 1991. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development 111, 131143.
  • Nicol, J. A. C. 1989. The Eyes of Fishes. Oxford University Press: New York.
  • Niehrs, C. 2012. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767779.
  • Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R. & Episkopou, V. 1998. Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev. 12, 776781.
  • Nishimoto, S., Kawane, K., Watanabe-Fukunaga, R., Fukuyama, H., Ohsawa, Y., Uchiyama, Y., Hashida, N., Ohguro, N., Tano, Y., Morimoto, T., Fukuda, Y. & Nagata, S. 2003. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 424, 10711074.
  • Ogino, H. & Yasuda, K. 1998. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115118.
  • Ohtaka-Maruyama, C., Hanaoka, F. & Chepelinsky, A. B. 1998. A novel alternative spliced variant of the transcription factor AP2alpha is expressed in the murine ocular lens. Dev. Biol. 202, 125135.
  • Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A. & Gruss, P. 1995. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 40454055.
  • Orr-Urtreger, A., Bedford, M. T., Burakova, T., Arman, E., Zimmer, Y., Yayon, A., Givol, D. & Lonai, P. 1993. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol. 158, 475486.
  • Pelton, R. W., Saxena, B., Jones, M., Moses, H. L. & Gold, L. I. 1991. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell Biol. 115, 10911105.
  • Peters, K., Ornitz, D., Werner, S. & Williams, L. 1993. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol. 155, 423430.
  • Piatigorsky, J. 1973. Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells. Dev. Biol. 30, 214216.
  • Piatigorsky, J., Rothschild, S. S. & Milstone, L. M. 1973. Differentiation of lens fibers in explanted embryonic chick lens epithelia. Dev. Biol. 34, 334345.
  • Pontoriero, G. F., Deschamps, P., Ashery-Padan, R., Wong, R., Yang, Y., Zavadil, J., Cvekl, A., Sullivan, S., Williams, T. & West-Mays, J. A. 2008. Cell autonomous roles for AP-2alpha in lens vesicle separation and maintenance of the lens epithelial cell phenotype. Dev. Dyn. 237, 602617.
  • Pontoriero, G. F., Smith, A. N., Miller, L. A., Radice, G. L., West-Mays, J. A. & Lang, R. A. 2009. Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev. Biol. 326, 403417.
  • Reneker, L. W. & Overbeek, P. A. 1996. Lens-specific expression of PDGF-A alters lens growth and development. Dev. Biol. 180, 554565.
  • Ring, B. Z., Cordes, S. P., Overbeek, P. A. & Barsh, G. S. 2000. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307317.
  • Rowan, S., Conley, K. W., Le, T. T., Donner, A. L., Maas, R. L. & Brown, N. L. 2008. Notch signaling regulates growth and differentiation in the mammalian lens. Dev. Biol. 321, 111122.
  • Saika, S. 2004. Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog. Retin. Eye. Res. 23, 283305.
  • Saika, S., Ikeda, K., Yamanaka, O., Flanders, K. C., Ohnishi, Y., Nakajima, Y., Muragaki, Y. & Ooshima, A. 2006. Adenoviral gene transfer of BMP-7, Id2, or Id3 suppresses injury-induced epithelial-to-mesenchymal transition of lens epithelium in mice. Am. J. Physiol. Cell Physiol. 290, C282C289.
  • Saika, S., Ikeda, K., Yamanaka, O., Sato, M., Muragaki, Y., Ohnishi, Y., Ooshima, A., Nakajima, Y., Namikawa, K., Kiyama, H., Flanders, K. C. & Roberts, A. B. 2004a. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial-mesenchymal transition of lens epithelium in mice. Lab. Invest. 84, 12591270.
  • Saika, S., Kono-Saika, S., Ohnishi, Y., Sato, M., Muragaki, Y., Ooshima, A., Flanders, K. C., Yoo, J., Anzano, M., Liu, C. Y., Kao, W. W. Y & Roberts, A. B. 2004b. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol. 164, 651663.
  • Saika, S., Miyamoto, T., Ishida, I., Shirai, K., Ohnishi, Y., Ooshima, A. & McAvoy, J. W. 2002. TGFbeta-Smad signalling in postoperative human lens epithelial cells. Br. J. Ophthalmol. 86, 14281433.
  • Saika, S., Okada, Y., Miyamoto, T., Ohnishi, Y., Ooshima, A. & McAvoy, J. W. 2001. Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair. Exp. Eye Res. 72, 679686.
  • Saravanamuthu, S. S., Le, T. T., Gao, C. Y., Cojocaru, R. I., Pandiyan, P., Liu, C., Zhang, J., Zelenka, P. S. & Brown, N. L. 2012. Conditional ablation of the Notch2 receptor in the ocular lens. Dev. Biol. 362, 219229.
  • Schulz, M. W., Chamberlain, C. G., de Iongh, R. U. & McAvoy, J. W. 1993. Acidic and basic FGF in ocular media and lens: implications for lens polarity and growth patterns. Development 118, 117126.
  • Shestopalov, V. I. & Bassnett, S. 2000. Expression of autofluorescent proteins reveals a novel protein permeable pathway between cells in the lens core. J. Cell Sci. 113(Pt 11), 19131921.
  • Shestopalov, V. I. & Bassnett, S. 2003. Development of a macromolecular diffusion pathway in the lens. J. Cell Sci. 116, 41914199.
  • Shi, X., Bosenko, D. V., Zinkevich, N. S., Foley, S., Hyde, D. R., Semina, E. V. & Vihtelic, T. S. 2005. Zebrafish pitx3 is necessary for normal lens and retinal development. Mech. Dev. 122, 513527.
  • Shi, X., Luo, Y., Howley, S., Dzialo, A., Foley, S., Hyde, D. R. & Vihtelic, T. S. 2006. Zebrafish foxe3: roles in ocular lens morphogenesis through interaction with pitx3. Mech. Dev. 123, 761782.
  • Shi, Y., Barton, K., De Maria, A., Petrash, J. M., Shiels, A. & Bassnett, S. 2009. The stratified syncytium of the vertebrate lens. J. Cell Sci. 122, 16071615.
  • Simirskii, V. N., Wang, Y. & Duncan, M. K. 2007. Conditional deletion of beta1-integrin from the developing lens leads to loss of the lens epithelial phenotype. Dev. Biol. 306, 658668.
  • Song, X., Sato, Y., Felemban, A., Ito, A., Hossain, M., Ochiai, H., Yamamoto, T., Sekiguchi, K., Tanaka, H. & Ohta, K. 2010. Equarin is involved as an FGF signaling modulator in chick lens differentiation. Dev. Biol. 368, 109117.
  • Spemann, H. 1901. Über Korrelationen in die Entwickelung des Auges. Verh. Ant. Ges. 15, 6179.
  • Stump, R. J., Ang, S., Chen, Y., von Bahr, T., Lovicu, F. J., Pinson, K., de Iongh, R. U., Yamaguchi, T. P., Sassoon, D. A. & McAvoy, J. W. 2003. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev. Biol. 259, 4861.
  • Takeichi, M. 1988. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639655.
  • Takeuchi, T., Kudo, T., Ogata, K., Hamada, M., Nakamura, M., Kito, K., Abe, Y., Ueda, N., Yamamoto, M., Engel, J. D. & Takahashi, S. 2009. Neither MafA/L-Maf nor MafB is essential for lens development in mice. Genes Cells 14, 941947.
  • Varnum, D. S. & Stevens, L. C. 1968. Aphakia, a new mutation in the mouse. J. Hered. 59, 147150.
  • Vogel-Hopker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L. & Rapaport, D. H. 2000. Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mech. Dev. 94, 2536.
  • Walker, J. & Menko, A. S. 2009. Integrins in lens development and disease. Exp. Eye Res. 88, 216225.
  • Wederell, E. D. & de Iongh, R. U. 2006. Extracellular matrix and integrin signaling in lens development and cataract. Semin. Cell Dev. Biol. 17, 759776.
  • West-Mays, J. A., Coyle, B. M., Piatigorsky, J., Papagiotas, S. & Libby, D. 2002. Ectopic expression of AP-2alpha transcription factor in the lens disrupts fiber cell differentiation. Dev. Biol. 245, 1327.
  • West-Mays, J. A., Zhang, J., Nottoli, T., Hagopian-Donaldson, S., Libby, D., Strissel, K. J. & Williams, T. 1999. AP-2alpha transcription factor is required for early morphogenesis of the lens vesicle. Dev. Biol. 206, 4662.
  • Wigle, J. T., Chowdhury, K., Gruss, P. & Oliver, G. 1999. Prox1 function is crucial for mouse lens-fibre elongation. Nat. Genet. 21, 318322.
  • Wilkinson, D. G., Bhatt, S. & McMahon, A. P. 1989. Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105, 131136.
  • Wormstone, I. M. 2002. Posterior capsule opacification: a cell biological perspective. Exp. Eye Res. 74, 337347.
  • Wu, G., Glickstein, S., Liu, W., Fujita, T., Li, W., Yang, Q., Duvoisin, R. & Wan, Y. 2007. The anaphase-promoting complex coordinates initiation of lens differentiation. Mol. Biol. Cell 18, 10181029.
  • Xu, L., Overbeek, P. A. & Reneker, L. W. 2002. Systematic analysis of E-, N- and P-cadherin expression in mouse eye development. Exp. Eye Res. 74, 753760.
  • Yamada, R., Mizutani-Koseki, Y., Hasegawa, T., Osumi, N., Koseki, H. & Takahashi, N. 2003. Cell-autonomous involvement of Mab21l1 is essential for lens placode development. Development 130, 17591770.
  • Yamaguchi, M., Tonou-Fujimori, N., Komori, A., Maeda, R., Nojima, Y., Li, H., Okamoto, H. & Masai, I. 2005. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132, 30273043.
  • Yamamoto, Y. 1976. Growth of lens and ocular environment: role of neural retina in the growth of mouse lens as revealed by an implantation experiment. Dev. Growth Differ. 18, 273281.
  • Zhao, H., Yang, T., Madakashira, B. P., Thiels, C. A., Bechtle, C. A., Garcia, C. M., Zhang, H., Yu, K., Ornitz, D. M., Beebe, D. C. & Robinson, M. L. 2008. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev. Biol. 318, 276288.
  • Zhao, H., Yang, Y., Partanen, J., Ciruna, B. G., Rossant, J. & Robinson, M. L. 2006. Fibroblast growth factor receptor 1 (Fgfr1) is not essential for lens fiber differentiation in mice. Mol. Vis. 12, 1525.
  • Zhao, J., Kawai, K., Wang, H., Wu, D., Wang, M., Yue, Z., Zhang, J. & Liu, Y. H. 2012. Loss of Msx2 function down-regulates the FoxE3 expression and results in anterior segment dysgenesis resembling Peters anomaly. Am. J. Pathol. 180, 22302239.
  • Zhao, S., Chen, Q., Hung, F. C. & Overbeek, P. A. 2002. BMP signaling is required for development of the ciliary body. Development 129, 44354442.
  • Zwaan, J. 1975. Immunofluorescent studies on aphakia, a mutation of a gene involved in the control of lens differentiation in the mouse embryo. Dev. Biol. 44, 306312.
  • Zwaan, J. & Kenyon, R. E. Jr 1984. Cell replication and terminal differentiation in the embryonic chicken lens: normal and forced initiation of lens fibre formation. J. Embryol. Exp. Morphol. 84, 331349.