SEARCH

SEARCH BY CITATION

References

  • Ahuja, P., Perriard, E., Perriard, J.-C. & Ehler, E. 2004. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J. Cell Sci. 117, 32953306.
  • Ahuja, P., Sdek, P. & Maclellan, W. R. 2007. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521544.
  • Bersell, K., Arab, S., Haring, B. & Kuhn, B. 2009. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257270.
  • Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., Jiang, H., Wang, Y. & Keating, M. T. 2005. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 11751187.
  • Engel, F. B., Schebesta, M. & Keating, M. T. 2006. Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell. Cardiol. 41, 601612.
  • Erokhina, I. L. 1968. Proliferation dynamics of cellular elements in the differentiating mouse myocardium. Tsitologiia 10, 13911409.
  • Eulalio, A., Mano, M., Ferro, M. D., Zentilin, L., Sinagra, G., Zacchigna, S. & Giacca, M. 2012. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376381.
  • Gräbner, W. & Pfitzer, P. 1974. Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol. 15, 279294.
  • Harvey, R. P. 1999. Seeking a regulatory roadmap for heart morphogenesis. Semin. Cell Dev. Biol. 10, 99107.
  • Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. L. & Martin, J. F. 2011. Hippo Pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458461.
  • Ikenishi, A., Okayama, H., Iwamoto, N., Yoshitome, S., Tane, S., Nakamura, K., Obayashi, T., Hayashi, T. & Takeuchi, T. 2012. Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev. Growth Differ. 54, 731738.
  • Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A. & Belmonte, J. C. I. 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606609.
  • Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., Evans, T., Macrae, C. A., Stainier, D. Y. R. & Poss, K. D. 2010. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601605.
  • Kikuchi, K. & Poss, K. D. 2012. Cardiac regenerative capacity and mechanisms. Annu. Rev. Cell Dev. Biol. 28, 719741.
  • Kobayashi, T., Minowa, O., Kuno, J., Mitani, H., Hino, O. & Noda, T. 1999. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res. 59, 12061211.
  • Kobayashi, T., Minowa, O., Sugitani, Y., Takai, S., Mitani, H., Kobayashi, E., Noda, T. & Hino, O. 2001. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc. Natl Acad. Sci. USA 98, 87628767.
  • Li, F., Wang, X., Bunger, P. C. & Gerdes, A. M. 1997. Formation of binucleated cardiac myocytes in rat heart: I. role of actin-myosin contractile ring. J. Mol. Cell. Cardiol. 29, 15411551.
  • Mahmoud, A. I., Kocabas, F., Muralidhar, S. A., Kimura, W., Koura, A. S., Thet, S., Porrello, E. R., Sadek, H. A. 2013. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249253.
  • Miyaoka, Y., Ebato, K., Kato, H., Arakawa, S., Shimizu, S. & Miyajima, A. 2012. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22, 11661175.
  • Mollova, M., Bersell, K., Walsh, S., Savla, J., Das, L. T., Park, S.-Y., Silberstein, L. E., Dos Remedios, C. G., Graham, D., Colan, S. & Kuhn, B. 2013. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 14461451.
  • Nakajima, K., Inagawa, M., Uchida, C., Okada, K., Tane, S., Kojima, M., Kubota, M., Noda, M., Ogawa, S., Shirato, H., Sato, M., Suzuki-Migishima, R., Hino, T., Satoh, Y., Kitagawa, M. & Takeuchi, T. 2011. Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway. Development 138, 17711782.
  • Oberpriller, J. & Oberpriller, J. C. 1971. Mitosis in adult newt ventricle. J. Cell Biol. 49, 560563.
  • Oberpriller, J. O. & Oberpriller, J. C. 1974. Response of the adult newt ventricle to injury. J. Exp. Zool. 187, 249253.
  • Olivetti, G., Cigola, E., Maestri, R., Corradi, D., Lagrasta, C., Gambert, S. R. & Anversa, P. 1996. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 28, 14631477.
  • Olson, E. N. 2006. Gene regulatory networks in the evolution and development of the heart. Science 313, 19221927.
  • Pan, D. 2010. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491505.
  • Porrello, E. R., Johnson, B. A., Aurora, A. B., Simpson, E., Nam, Y.-J., Matkovich, S. J., Dorn, G. W., Van Rooij, E. & Olson, E. N. 2011a. miR-15 family regulates postnatal mitotic arrest of cardiomyocytes/novelty and significance. Circ. Res. 109, 670679.
  • Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N. & Sadek, H. A. 2011b. Transient regenerative potential of the neonatal mouse heart. Science 331, 10781080.
  • Rumyantsev, P. P. 1977. Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int. Rev. Cytol. 51, 186273.
  • Schmid, G. & Pfitzer, P. 1985. Mitoses and binucleated cells in perinatal human hearts. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 48, 5967.
  • Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., Wu, T.-D., Guerquin-Kern, J.-L., Lechene, C. P. & Lee, R. T. 2013. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433436.
  • Shirato, H., Ogawa, S., Nakajima, K., Inagawa, M., Kojima, M., Tachibana, M., Shinkai, Y. & Takeuchi, T. 2009. A jumonji (jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9. J. Biol. Chem. 284, 733739.
  • Soonpaa, M. H. & Field, L. J. 1998. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 1526.
  • Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. 1996. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183H2189.
  • Takahashi, M., Kojima, M., Nakajima, K., Suzuki-Migishima, R. & Takeuchi, T. 2007. Functions of a jumonji-cyclin D1 pathway in the coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain. Dev. Biol. 303, 549560.
  • Takeuchi, T., Yamazaki, Y., Katoh-Fukui, Y., Tsuchiya, R., Kondo, S., Motoyama, J. & Higashinakagawa, T. 1995. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9, 12111222.
  • Takeuchi, T., Kojima, M., Nakajima, K. & Kondo, S. 1999. jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech. Dev. 86, 2938.
  • Takeuchi, T., Watanabe, Y., Takano-Shimizu, T. & Kondo, S. 2006. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev. Dyn. 235, 24492459.
  • Tane, S., Ikenishi, A., Okayama, H., Iwamoto, N., Nakayama, K. I. & Takeuchi, T. 2014. CDK inhibitors, p21Cip1 and p27Kip1, participate in cell cycle exit of mammalian cardiomyocytes. Biochem. Biophys. Res. Comm. 443, 11051109.
  • Toyoda, M., Shirato, H., Nakajima, K., Kojima, M., Takahashi, M., Kubota, M., Suzuki-Migishima, R., Motegi, Y., Yokoyama, M. & Takeuchi, T. 2003. jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Dev. Cell 5, 8597.
  • Xiao, G., Mao, S., Baumgarten, G., Serrano, J., Jordan, M. C., Roos, K. P., Fishbein, M. C. & Maclellan, W. R. 2001. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circ. Res. 89, 11221129.