SEARCH

SEARCH BY CITATION

References

  • 1
    Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 1998;391:799803.
  • 2
    Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 1998;187:65560.
  • 3
    Cyster JG, Ansel KM, Reif K, Ekland EH, Hyman PL, Tang HL et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev 2000;176:18193.
    Direct Link:
  • 4
    Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 2005;35:134759.
  • 5
    Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgewick JD et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000;406:30914.
  • 6
    Shi K, Hayashida K, Kaneko M, Hashimoto J, Tomita T, Lipsky PE et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol 2001;166:6505.
  • 7
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O'Fallon WM et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001;167:107280.
  • 8
    Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996;87:103747.
  • 9
    Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000;192:154552.
  • 10
    Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000;192:155362.
  • 11
    Ansel KM, Harris RBS, Cyster JG. CXCL13 is required for B1 cell homing, natural antibody production and body cavity immunity. Immunity 2002;16:6776.
  • 12
    Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 2000;12:47181.
  • 13
    Kratz A, Campos-Neto A, Hanson MS, Ruddle N. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 1996;183:146172.
  • 14
    Manzo A, Vitolo B, Humby F, Caporali R, Jarrossay D, Dell'Accio F et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis Rheum 2008;58:337787.
  • 15
    Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 2004;104:30217.
  • 16
    Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009;6:e1.
  • 17
    Rioja I, Hughes FJ, Sharp CH, Warnock LC, Montgomery DS, Akil M et al. Potential novel biomarkers of disease activity in rheumatoid arthritis patients: CXCL13, CCL23, transforming growth factor alpha, tumor necrosis factor receptor superfamily member 9, and macrophage colony-stimulating factor. Arthritis Rheum 2008;58:225767.
  • 18
    Meeuwisse CM, van der Linden MP, Rullmann TA, Allaart CF, Nelissen R, Huizinger TW et al. Identification of CXCL13 as a marker for rheumatoid arthritis outcome using an in silico model of the rheumatic joint. Arthritis Rheum 2011;63:126573.
  • 19
    Rosengren S, Wei N, Kalunian KC, Kavanaugh A, Boyle DL. CXCL13: a novel biomarker of B-cell return following rituximab treatment and synovitis in patients with rheumatoid arthritis. Rheumatology 2011;50:60310.
  • 20
    Brand DD, Kang AH, Rosloniec EF. Immunopathogenesis of collagen arthritis. Springer Semin Immunopathol 2011;25:318.
  • 21
    Han S, Cao S, Bheekha-Escura R, Zheng B. Germinal center reaction in the joints of mice with collagen-induced arthritis: an animal model of lymphocyte activation and differentiation in arthritis joints. Arthritis Rheum 2001;44:143843.
  • 22
    Svensson L, Jirholt J, Holmdahl R, Jansson L. B cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clin Exp Immunol 1998;111:5216.
    Direct Link:
  • 23
    Yanaba K, Hamaguchi Y, Venturi GM, Steeber DA, St Clair EW, Tedder TF. B cell depletion delays collagen-induced arthritis in mice: arthritis induction requires synergy between humoral and cell-mediated immunity. J Immunol 2007;179:136980.
  • 24
    Dunussi-Joannopoulos K, Hancock GE, Kunz A, Hegen M, Zhou XX, Sheppard BJ et al. B-cell depletion inhibits arthritis in a collagen-induced arthritis (CIA) model, but does not adversely affect humoral responses in a respiratory syncytial virus (RSV) vaccination model. Blood 2005;106:223543.
  • 25
    Zheng B, Ozen Z, Zhang X, De Silva S, Marinova E, Guo L et al. CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum 2005;52:6206.
  • 26
    Stannard CJ, Thomas A, Foster M, Macphail S, Wharton H, Finch DK et al. Neutralisation of CXCL13 impacts B-Cell trafficking and reduces severity of established experimental arthritis. In American College of Rheumatology Annual Scientific Meeting. 2008. San Francisco.
  • 27
    Wengner AM, Hopken UE, Petrow PK, Hartmann S, Schurigt U, Brauer R et al. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum 2007;56:327183.
  • 28
    Ettinger R, Mebius R, Browning JL, Michie SA, van Tuijl S, Kraal G et al. Effects of tumor necrosis factor and lymphotoxin on peripheral lymphoid tissue development. Int Immunol 1998;10:72741.
  • 29
    Ettinger R, Browning JL, Michie SA, van Ewijk W, McDevitt HO. Disrupted splenic architecture, but normal lymph node development in mice expressing a soluble lymphotoxin-beta receptor-IgG1 fusion protein. Proc Natl Acad Sci U S A 1996;93:131027.
  • 30
    Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol 2009;9:491502.
  • 31
    Zekavat G, Rostami SY, Badkerhanian A, Parsons RF, Koeberlein B, Yu M et al. In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J Immunol 2008;181:813344.
  • 32
    Vora KA, Wang LC, Rao SP, Liu Z-Y, Majeau GR, Cutler AH et al. Germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J Immunol 2003;171:54751.
  • 33
    Ebisuno Y, Tanaka T, Kanemitsu N, Kanda H, Yamaguchi K, Kaisho T et al. Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J Immunol 2003;171:16426.
  • 34
    Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 1999;190:112334.
  • 35
    Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 2004;173:6878.
  • 36
    Kim CH, Lim HW, Kim JR, Rott L, Hillsamer P, Butcher EC. Unique gene expression program of human germinal center T helper cells. Blood 2004;104:195260.
  • 37
    Takagi R, Higashi T, Hashimoto K, Nakano K, Mizuno Y, Okazaki Y et al. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones. J Immunol 2008;181:1869.
  • 38
    Henry RA, Kendall PL. CXCL13 blockade disrupts B lymphocyte organization in tertiary lymphoid structures without altering B cell receptor bias or preventing diabetes in nonobese diabetic mice. J Immunol 2010;185:14605.
  • 39
    Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad AI. Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren's syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther 2009;11:R24.
  • 40
    Robinson CP, Yamachika S, Bounous DI, Brayer J, Jonsson R, Holmdahl R et al. A novel NOD-derived murine model of primary Sjogren's syndrome. Arthritis Rheum 1998;41:1506.
  • 41
    Fan L, Reilly CR, Luo Y, Dorf ME, Lo D. Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 2000;164:39559.
  • 42
    Drayton DL, Ying X, Lee J, Lesslauer W, Ruddle NH. Ectopic LT alpha beta directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 2003;197:115363.
  • 43
    Levesque MC, St Clair EW. B cell-directed therapies for autoimmune disease and correlates of disease response and relapse. J Allergy Clin Immunol 2008;121:1321.
  • 44
    Nakken B, Munthe MA, Konttinen YT, Sandberg AK, Szekanecz Z, Alex P et al. B cells and their targeting in rheumatoid arthritis- current concepts and future perspectives. Autoimmun Rev 2011;11:2834.
  • 45
    Wallace DJ, Stohl W, Furie R, Lisse JR, McKay JD, Merrill JT et al. A Phase II, Randomised, Double-Blind, Placebo-controlled, Dose-ranging study study of belimumab in patients with active systemic lupus erythmatosus. Arthritis Rheum 2009;61:116878.
  • 46
    Traczewski P, Rudnicka L. Treatment of systemic lupus erythematosus with epratuzumab. Br J Clin Pharmacol 2010;71:17582.
  • 47
    Daridon C, Blassfield D, Reiter K, Mei HE, Giesecke C, Goldenberg DM et al. Epratuzumab targetting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Research and Therapy 2010;12:R204.
  • 48
    Nanki T, Takada K, Komano Y, Morio T, Kanegane H, Nakajima A et al. Chemokine receptor expression and functional effects of chemokines on B cells: implication in the pathogenesis of rheumatoid arthritis. Arthritis Research and Therapy 2009;11:R149.
  • 49
    Cyster JG. B Cell follicles and antigen encounters of the third kind. Nat Immunol 2010;11:98996.
  • 50
    Rasheed A, Rahn H, Sallusto F, Lipp M, Muller G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur J Immunol 2006;36:1892903.
  • 51
    Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L et al. Generation of T Follicular Helper Cells is mediated by Interleukin-21 but independent of T Helper 1,2, or 17 cell lineages. Immunity 2008;29:13849.
  • 52
    Corcione A, Casazza S, Ferretti E, Giunti D, Zappia E, Pistorio A et al. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci U S A 2004;101:110649.
  • 53
    Kalinowska-Lyszczarz A, Szczucinski A, Pawlak MA, Losy J. Clinical study on CXCL13, CCL17, CCL20 and IL-17 as immune cell migration navigators in relapsing-remitting multiple sclerosis patients. J Neurol Sci 2011;300:815.
  • 54
    Khademi M, Kockum I, Andersson ML, Iacobaeus E, Brundin L, Sellebjerg F et al. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult Scler 2011;17:33543.
  • 55
    Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 2006;129:20011.
  • 56
    Haas J, Bekeredjian-Ding I, Milkova M, Balint B, Schwarz A, Korporal M et al. B cells undergo unique compartmentalized redistribution in multiple sclerosis. J Autoimmun 2011;37:28999.
  • 57
    Sellebjerg F, Bornsen L, Khademi M, Krakauer M, Olsson T, Frederiksen JL et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 2009;73:200310.
  • 58
    Henneken M, Dorner T, Burmester GR, Berek C. Differential expression of chemokine receptors on peripheral blood B cells from patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 2005;7:R100113.
  • 59
    Schmutz C, Hulme A, Burman A, Salmon M, Ashton B, Buckley C et al. Chemokine receptors in the rheumatoid synovium: upregulation of CXCR5. Arthritis Res Ther 2005;7:R21729.
  • 60
    Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren's syndrome. Arthritis Rheum 2001;44:263341.
  • 61
    Barone F, Bombardieri M, Rosado MM, Morgan PR, Challacombe SJ, De Vita S et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol 2008;180:513040.
  • 62
    Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmstrom P, Wahren-Harlenius M et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren's syndrome. Arthritis Rheum 2003;48:3187201.
  • 63
    Salomonsson S, Larsson P, Tengner P, Mellquist E, Hjelmstrom P, Wahren-Harlenius M. Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjogren's syndrome. Scand J Immunol 55:33642.
  • 64
    Xanthou G, Polihronis M, Tzioufas AG, Paikos S, Sideras P, Moutsopoulos HM. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjogren's syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum 2001;44:40818.
  • 65
    Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR, Challacombe SJ et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren's syndrome. Arthritis Rheum 2005;52:177384.
  • 66
    Armengol MP, Cardoso-Schmidt CB, Fernandez M, Ferrer X, Pujol-Borrell R, Juan M. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol 2003;170:63208.
  • 67
    Aust G, Sittig D, Becherer L, Anderegg U, Schutz A, Lamesch P et al. The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur J Endocrinol 2004;150:22534.
  • 68
    Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F, Tallaksen C et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 2006;108:43240.
  • 69
    Shiao YM, Lee CC, Hsu YH, Huang SF, Lin CY, Li LH et al. Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. J Neuroimmunol 2010;221:1016.