• stable isotope;
  • mixing model;
  • food web ecology;
  • predator subsidy;
  • trophic niche space


Fish communities may increase in biomass and productivity due to energy subsidies from the littoral invertebrate community. In lakes recovering from acidification and metal contamination, such as those in Sudbury, Ontario, Canada, impaired benthic invertebrate communities (i.e., low diversity with higher abundance of small-bodied taxa) allowed a critical test of the role of these littoral pathways on fish diet. We compared fish abundance, diversity, diet and biomass in eight recovering and eight reference lakes and related availability of the main littoral and pelagic invertebrate groups to fish diet regime using stable isotope analysis. A Bayesian mixing model (MixSIR) was used to estimate diet likelihood, and convex hull analysis was used to estimate trophic niche space of fish communities. Fish biomass did not differ between impaired and reference lakes despite substantial differences in potential diet. Fish depended strongly on littoral benthos in the reference lakes but consumed more pelagic food in the impaired lakes. The trophic niche of the focal, most common fish species (i.e., yellow perch, smallmouth bass, pumpkinseed and brown bullhead) was larger in the impaired lakes. We attributed these differences to low diversity at the highest trophic levels of fish communities in the impaired lakes as well as to depauperate benthic invertebrate communities. In contrast to the food webs of most temperate lakes, fish in impaired lakes preyed less on littoral invertebrates yet still managed to maintain a reference lake level of biomass standing crop by relying more on pelagic resources – macro zooplankton such as Chaoborus.