Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D2-like receptor tone in the nucleus accumbens


Correspondences: Kirsten A. Porter-Stransky and Dr Brandon J. Aragona, as above.

E-mails: and


To survive in a dynamic environment, animals must identify changes in resource availability and rapidly apply adaptive strategies to obtain resources that promote survival. We have utilised a behavioral paradigm to assess differences in foraging strategy when resource (reward) availability unexpectedly changes. When reward magnitude was reduced by 50% (receive one reward pellet instead of two), male and female rats developed a preference for the optimal choice by the second session. However, when an expected reward was omitted (receive no reward pellets instead of one), subjects displayed a robust preference for the optimal choice during the very first session. Previous research shows that, when an expected reward is omitted, dopamine neurons phasically decrease their firing rate, which is hypothesised to decrease dopamine release preferentially affecting D2-like receptors. As robust changes in behavioral preference were specific to reward omission, we tested this hypothesis and the functional role of D1- and D2-like receptors in the nucleus accumbens in mediating the rapid development of a behavioral preference for the rewarded option during reward omission in male rats. Blockade of both receptor types had no effect on this behavior; however, holding D2-like, but not D1-like, receptor tone via infusion of dopamine receptor agonists prevented the development of the preference for the rewarded option during reward omission. These results demonstrate that avoiding an outcome that has been tagged with aversive motivational properties is facilitated through decreased dopamine transmission and subsequent functional disruption of D2-like, but not D1-like, receptor tone in the nucleus accumbens.