Get access

The involvement of the GABAergic system in the formation and expression of the extinction memory in the crab Neohelice granulata

Authors

  • Martin Carbó Tano,

    1. Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
    Search for more papers by this author
  • Victor A. Molina,

    1. Departamento de Farmacología, IFEC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
    Search for more papers by this author
  • Maria Eugenia Pedreira

    Corresponding author
    1. Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
    Search for more papers by this author

Abstract

There is growing interest in the neurobiological mechanisms involved in the extinction of aversive memory. This cognitive process usually occurs after repeated or prolonged presentation of a conditioned stimulus that was previously associated with an unconditioned stimulus. If extinction is considered to be a new memory, the role of the γ-aminobutyric acid system (GABAergic system) during extinction memory consolidation should be similar to that described for the original trace. It is also accepted that negative modulation of the GABAergic system before testing can impair extinction memory expression. However, it seems possible to speculate that inhibitory mechanisms may be required in order to acquire a memory that is inhibitory in nature. Using a combination of behavioral protocols, such as weak and robust extinction training procedures, and pharmacological treatments, such as the systemic administration of GABAA agonist (muscimol) and antagonist (bicuculline), we investigated the role of the GABAergic system in the different phases of the extinction memory in the crab Neohelice granulata. We show that the stimulation of the GABAergic system impairs and its inactivation facilitates the extinction memory consolidation. Moreover, fine variations in the GABAergic tone affect its expression at testing. Finally, an active GABAergic system is necessary for the acquisition of the extinction memory. This detailed description may contribute to the understanding of the role of the GABAergic system in diverse aspects of the extinction memory.

Ancillary