Inverted-U shaped effects of D1 dopamine receptor stimulation in the medial preoptic nucleus on sexually motivated song in male European starlings



Past studies in songbirds have highlighted a central role for the medial preoptic nucleus (mPOA) in context-appropriate vocal communication. During the breeding season, male songbirds sing primarily to attract females (sexually motivated song) and to repel competitors (agonistically motivated song). Past data have linked dopamine and D1 dopamine receptors in the mPOA to sexually motivated but not agonistically motivated song; however, direct effects of dopamine receptor manipulations in the mPOA on song have not been experimentally tested. Here, we tested the hypothesis that D1 receptor stimulation in the mPOA selectively influences sexually motivated male song, and the possibility that the effects of D1 receptor agonism differ at low and high doses. In a first study, breeding-condition male European starlings received infusions of saline or a single dose of the D1 receptor agonist SKF 38393 on separate test days into the mPOA or hypothalamic control areas. Stimulation of D1 receptors in the mPOA triggered sexually motivated but not agonistically motivated song. A second study showed inverted-U shaped dose–response effects of the agonist, such that low levels of sexually motivated song were observed at low and high levels of D1 receptor activation. A third study showed that the effects of the D1 receptor agonist were blocked by the D1 receptor antagonist SCH 23390. These findings suggest that an optimal level of D1 receptor stimulation in the mPOA is needed to facilitate sexually motivated vocal production. The results support a central, context-specific role for the mPOA in vocal communication, and more broadly demonstrate a complex, modulatory influence of D1 receptors in the mPOA on sexually motivated behavior.