SEARCH

SEARCH BY CITATION

References

  • ACIA. (2005). Arctic Climate Impact Assessment. Cambridge University Press, Cambridge.
  • Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biol. Biochem., 38, 30033018.
  • Barrett, J.E., Virginia, R.A., Wall, D.H., Doran, P.T., Fountain, A.G., Welch, K.A., et al. (2008a). Persistent effects of a discrete climate event on a polar desert ecosystem. Glob. Change Biol., 14, 22492261.
  • Barrett, J.E., Virginia, R.A., Wall, D.H. & Adams, B.J. (2008b). Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity ecosystem. Glob. Change Biol., 14, 17341744.
  • Bergstrom, D.M. & Chown, S.L. (1999). Life at the front: history, ecology and change on southern ocean islands. Trends Ecol. Evol., 14, 472477.
  • Biasi, C., Meyer, H., Rusalimova, O., Hämmerle, R., Kaiser, C., Baranyi, C., et al. (2008). Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf tundra in Siberia. Plant Soil, 307, 191205.
  • Block, W., Webb, N.R., Coulson, S.J. & Hodkinson, I.D. (1994). Thermal adaptation in a high arctic collembolan Onychiurus arcticus. J. Insect Physiol., 40, 715722.
  • Bokhorst, S., Huiskes, A., Convey, P., van Bodegom, P.M. & Aerts, R. (2008). Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem., 40, 15471556.
  • Bokhorst, S., Huiskes, A., Convey, P., Sinclair, B.J., Lebouvier, M., Van der Vijver, B., et al. (2011). Microclimate impacts of passive warming methods in Antarctica: implication for climate change studies. Polar Biol., 34, 14211435.
  • Bokhorst, S., Phoenix, G.K., Bjerke, J.W., Callaghan, T.V., Huyer-Brugman, F. & Berg, M.P. (2012). Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Glob. Change Biol., 18, 11521162.
  • Bracegirdle, T.J., Connolley, W.M. & Turner, J. (2008). Antarctic climate change over the twenty-first century. J. Geophys. Res., 133, D03103. DOI: 10.1029/2007JD008933.
  • Brooker, R. & van der Wal, R. (2003). Can soil temperature direct the composition of high arctic plant communities? J. Veg. Sci., 14, 535542.
  • Callaghan, T.V., Björn, L.O., Chernov, Y., Chapin, T., Christensen, T.R., Huntley, B., et al. (2004). Biodiversity, distribution and adaptations of Arctic species in the context of environmental change. Ambio, 33, 404417.
  • Callaghan, T.V., Tweedie, C.E., Åkerman, J., Andrews, C., Bergstedt, J., Butler, M.G., et al. (2011). Multidecadal changes in tundra environments and ecosystems: synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). Ambio, 40, 705716.
  • Chapin, F.S. III, Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., et al. (2005). Role of land-surface changes in Arctic summer warming. Science, 310, 657660.
  • Chernov, Y.I. (1995). Diversity of the Arctic terrestrial fauna. In: Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystems Consequences (eds Chapin, S.F. III & Körner, C.). Springer-Verlag, Berlin, pp. 8195.
  • Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., Crosbie, K., et al. (2012). Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. USA, 109, 49384943.
  • Comiso, J.C. (2006). Arctic warming signals from satellite observations. Weather, 61, 7076.
  • Convey, P. (1996). Overwintering strategies of terrestrial invertebrates from Antarctica – the significance of flexibility in extremely seasonal environments. Eur. J. Entomol., 93, 489505.
  • Convey, P. (2003). Soil faunal community response to environmental manipulation on Alexander Island, southern maritime Antarctic. In: Antarctic Biology in a Global Context (eds Huiskes, A.H.L., Gieskes, W.W.C., Rozema, J., Schorno, R.M.L., van der Vies, S.M. & Wolff, W.J.). Backhuys Publishers, Leiden, the Netherlands, pp. 7478.
  • Convey, P. (2008). Antarctic ecosystems. In: Encyclopedia of biodiversity (ed Levin, S.A.). Vol. 1, 2nd edn. Academic Press, San Diego.
  • Convey, P. (2011). Antarctic terrestrial biodiversity in a changing world. Polar Biol., 34, 16291641.
  • Convey, P., Pugh, P.J.A., Jackson, C., Murray, A.W., Ruthland, C.T., Xiong, F.S., et al. (2002). Responses of Antarctic terrestrial microarthropods to long-term climate manipulations. Ecology, 83, 31303140.
  • Convey, P., Block, W. & Peat, H.J. (2003). Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Glob. Change Biol., 9, 17181730.
  • Convey, P., Gibson, J.E.A., Hillenbrand, C.-D., Hodgson, D.A., Pugh, P.J.A., Smellie, J.L., et al. (2008). Antarctic terrestrial life – challenging the history of the frozen continent? Biol. Rev., 83, 103117.
  • Cook, A.J., Fox, A.J., Vaughan, D.G. & Ferrigno, J.G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541544.
  • Coulson, S.J., Hodkinson, I.D., Webb, N.R., Block, W., Bale, J.S., Strathdee, A.T., et al. (1996). Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol., 16, 147153.
  • Coulson, S.J., Leinaas, H.P., Ims, R.A. & Sovik, G. (2000). Experimental manipulation of the winter surface ice layer: the effects on a high Arctic soil microarthropod community. Ecography, 23, 299306.
  • Coulson, S.J., Hodkinson, I.D. & Webb, N.R. (2003). Microscale distribution patterns in high Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. Ecography, 26, 801809.
  • Danks, H.V. (1990). Arctic insects: instructive diversity. In: Canada's missing dimension: science and history in the Canadian arctic islands (ed Harrington, C.R.). Canadian Museum of Nature, Ottawa, pp. 444470.
  • Day, T.A., Ruhland, C.T. & Xiong, F.S. (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. Glob. Change Biol., 14, 18271843.
  • Day, T.A., Ruhland, C.T., Strauss, S.L., Park, J.-H., Krieg, M.L., Krna, M.A., et al. (2009). Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Glob. Change Biol., 15, 16401651.
  • Dollery, R., Hodkinson, I.D. & Jónsdóttir, I.S. (2006). Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography, 29, 111119.
  • Doran, P.T., Priscu, J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., et al. (2002). Antarctic climate cooling and terrestrial ecosystem response. Nature, 415, 517520.
  • Ducklow, H.W., Baker, K., Martinson, D.G., Quetin, L.B., Ross, R.M., Smith, R.C., et al. (2007). Marine pelagic ecosystems: the West Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci., 362, 6794.
  • Fowbert, J.A. & Smith, R.I.L. (1994). Rapid population increases in native vascular plants in the Argentine islands, Antarctic Peninsula. Arct. Alp. Res., 26, 290296.
  • Gooseff, M.N., Barrett, J.E., Doran, P.T., Fountain, A.G., Lyons, W.B., Parsons, A.N., et al. (2003). Snowpack influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arct. Antarct. Alp. Res., 35, 9199.
  • Hill, G.B. & Henry, G.H.R. (2011). Responses of High Arctic wet sedge tundra to climate warming since 1980. Glob. Change Biol., 17, 276287.
  • Hodkinson, I.D., Coulson, S.J., Webb, N.R. & Block, W. (1996). Can Arctic soil microarthropods survive elevated summer temperatures? Funct. Ecol., 10, 314321.
  • Hodkinson, I.D., Webb, N.R., Bale, J.S. & Block, W. (1999). Hydrology, water availability and tundra ecosystem function in a changing climate: the need for a closer integration of ideas? Glob. Change Biol., 5, 359369.
  • Hughes, K.A., Lawley, B. & Newsham, K.K. (2003). Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl. Environ. Microbiol., 69, 1488. DOI: 10.1128/AEM.69.3.1488-1491.2003.
  • Huiskes, A., Convey, P. & Bergstrom, D.M. (2006). Trends in Antarctic terrestrial and limnetic ecosystems. In: Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator (eds Bergstrom, D.M., Convey, P. & Huiskes, A.H.L.). Springer, Dordrecht, Germany, pp. 113.
  • Jahn, M., Sachs, T., Mansfeldt, T. & Overesch, M. (2010). Global climate change and its impact on the terrestrial Arctic carbon cycle with special regards to ecosystem components and the greenhouse-gas balance. J. Plant Nutr. Soil Sci., 173, 627643.
  • Jentsch, A. & Beierkuhnlein, C. (2008). Research frontiers in climate change: effects of extreme meteorological events on ecosystems. C. R. Geosci., 340, 621628.
  • Kaufmann, R. (2002). Glacier foreland colonisation: distinguishing between short-term and long-term effects of climate change. Oecologia, 130, 470475.
  • Kennedy, A.D. (1994). Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography, 17, 131140.
  • Kennedy, A.D. (1995). Antarctic terrestrial ecosystem response to global environmental change. Annu. Rev. Ecol. Syst., 26, 683704.
  • Konestabo, H.S., Michelsen, A. & Holmstrup, M. (2007). Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Appl. Soil Ecol., 36, 136146.
  • Krinner, G., Magand, O., Simmonds, I., Genthon, C. & Dufresne, J.-L. (2007). Simulated precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim. Dyn., 28, 215230.
  • Lamb, E.G., Han, S., Lanoil, B.D., Henry, G.H.R., Brummell, M.E., Banerjee, S., et al. (2011). A high Arctic soil ecosystem resists long-term environmental manipulations. Glob. Change Biol., 17, 31873194.
  • Lewis Smith, R.I. (1999). Biological and environmental characteristics of three cosmopolitan mosses dominant in continental Antarctica. J. Veg. Sci., 10, 231242.
  • Lewis Smith, R.I. & Ochyra, R. (2006). High altitude Antarctic soil propagule bank yields an exotic moss and potential colonist. J. Hattori Bot. Lab., 100, 325331.
  • Lund, M., Lafleur, P.M., Roulet, N.T., Lindroth, A., Christensen, T.R., Aurela, M., et al. (2010). Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol., 16, 24362448.
  • Mack, M.C., Bret-Harte, M.S., Hollingsworth, T.N., Jandt, R.R., Schuur, E.A.G., Shaver, G.R., et al. (2011). Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475, 489492.
  • Marchand, F.L., Nijs, I., de Boeck, H.J., Kockelbergh, F., Mertens, S. & Beyens, L. (2004). Increased turnover but little change in the carbon balance of high-arctic tundra exposed to whole growing season warming. Arct. Antarct. Alp. Res., 36, 298307.
  • Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: current State and Trends. Findings of the Condition and Trends Working Group. Vol. 1. Island Press, Washington DC, USA.
  • Newsham, K.K. & Robinson, S.A. (2009). Responses of plants in polar regions to UVB exposure: a meta-analysis. Glob. Change Biol., 15, 25742589.
  • Nielsen, U.N., Ayres, E., Wall, D.H. & Bardgett, R.D. (2011a). Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci., 62, 105116.
  • Nielsen, U.N., Wall, D.H., Adams, B.J. & Virginia, R.A. (2011b). Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol., 34, 17011711.
  • Nielsen, U.N., Wall, D.H., Adams, B.J., Virginia, R.A., Ball, B.A., Gooseff, M.N., et al. (2012). The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere, 3(2), 17.
  • Oberbauer, S.F., Tweedie, C.E., Welker, J.M., Fahnestock, J.T., Henry, G.H.R., Webber, P.T., et al. (2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradient. Ecol. Monogr., 77, 221238.
  • Ochyra, R., Bednarek-Ochyra, H. & Smith, R.I.L. (2008). New and rare moss species from the Antarctic. Nova Hedwigia, 87, 457477.
  • Osterkamp, T.E., Viereck, L., Shur, Y., Jorgenson, M.T., Racine, C., Doyle, A., et al. (2000). Observations of thermokarst and its impact on boreal forests in Alaska. Arct. Antarct. Alp. Res., 32, 303315.
  • Øvstedal, D.O. & Smith, R.I.L. (2009). Further additions to the lichen flora of Antarctica and South Georgia. Nova Hedwigia, 88, 157168.
  • Parnikoza, I., Convey, P., Dykyy, I., Trokhymets, V., Milinevsky, G., Tyschenko, O., et al. (2009). Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Glob. Change Biol., 15, 16851693.
  • Peck, L.S., Convey, P. & Barnes, D.K.A. (2006). Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol. Rev., 81, 75109.
  • Post, E., Forchhammer, M.C., Bret-Harte, M.S., Callaghan, T.V., Christensen, T.R., Elberling, B., et al. (2009). Ecological dynamics across the Arctic associated with recent climate change. Science, 325, 13551358.
  • Reuss, L., Michelsen, A., Schmidt, I.K. & Jonasson, S. (1999). Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant Soil, 212, 6373.
  • Rinnan, R., Keinanen, M.M., Kasurinen, A., Asikainen, J., Kekki, T.K., Holopainen, T., et al. (2005). Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass. Glob. Change Biol., 11, 564574.
  • Rinnan, R., Michelsen, A., Bååth, E. & Jonasson, S. (2007). Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob. Change Biol., 13, 2839.
  • Schmidt, I.K., Jonasson, S., Shaver, G.H., Michelsen, A. & Nordin, A. (2002). Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil, 242, 93106.
  • Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O. & Osterkamp, T.E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556559.
  • Serreze, M.C., Walsh, J.E., Chapin, F.S. III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., et al. (2000). Observational evidence of recent changes in the northern high-latitude environment. Clim. Change, 46, 159207.
  • Simmons, B.L., Wall, D.H., Adams, B.J., Ayres, E., Barrett, J.E. & Virginia, R.A. (2009). Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol. Biochem., 41, 20522060.
  • Sinclair, B.J. (2002). Effects of increased temperatures simulating climate change on terrestrial invertebrates on Ross Island. Pedobiologia, 46, 150160.
  • Sjögersten, S., van der Wal, R. & Woodin, S.J. (2008). Habitat type determines herbivory controls over CO2 fluxes in a warmer Arctic. Ecology, 89, 21032116.
  • Sjursen, H., Michelsen, A. & Jonasson, S. (2005). Effects of long-term soil warming and fertilization on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol., 30, 148161.
  • Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., et al. (2008). High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680684.
  • Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. & Shindell, D.T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459463.
  • Stendel, M. & Christensen, J.H. (2002). Impact of global warming on permafrost conditions in a coupled GCM. Geophys. Res. Lett., 29, DOI: 10.1029/2001GL014345.
  • Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G. & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar region. Global Biogeochem. Cycles, 23, GB2023. DOI: 10.1029/2008GB03327.
  • Tebaldi, C., Smith, R.L., Nychka, D. & Mearns, L.O. (2006). Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J. Clim., 18, 15241540.
  • Timling, I. & Taylor, D.L. (2012). Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol., 5, 419429.
  • Tosi, S., Onofri, S., Brusoni, M., Zucconi, L. & Vishniac, H. (2005). Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol., 28, 470482.
  • Tsyganov, A.N., Nijs, I. & Beyens, L. (2011). Does climate warming stimulate or inhibit soil protest communities? A test on testate amoebae in high-Arctic tundra with free-air temperature increase. Protist, 162, 237248.
  • Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., et al. (2005). Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294.
  • Turner, J., Bindschadler, R., Convey, P., Di Prisco, G., Fahrbach, E. & Gutt, J. et al. (2009a). Antarctic Climate Change and the Environment. Scientific Committee for Antarctic Research, Cambridge, pp. 554.
  • Turner, J., Comiso, J.C., Marshall, G.J., Lachlan-Cope, T.A., Bracegirdle, T. & Maksym, T. et al. (2009b). Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502. DOI: 10.1029/2009GL037524.
  • Ugolini, F.C. & Bockheim, J.G. (2008). Antarctic soils and soil formation in a changing environment: a review. Geoderma, 144, 18.
  • Vincent, W.F., Whyte, L.G., Lovejoy, C., Greer, C.W., Laurion, I., Suttle, C.A., et al. (2009). Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Sci., 3, 171180.
  • Vogel, J., Schuur, E.A.G., Trucco, C. & Lee, H. (2009). Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. J. Geophys. Res., 114, G04018. DOI: 10.1029/2008JG000901.
  • Walker, M.D., Walker, D.A., Welker, J.M., Arft, A.M., Bardsley, T., Brooks, P.D., et al. (1999). Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol. Process., 13, 23152330.
  • Wall, D.H. (2007). Global change tipping points: above- and below-ground interactions in a low diversity ecosystem. Philos. Trans. R. Soc. Lond. B Biol. Sci., 362, 22912306.
  • Wall, D.H., Bradford, M.A., St. John, M.G., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.E., et al. (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol., 14, 26612677.
  • Wall, D.H., Lyons, W.B., Chown, S.L., Convey, P., Howard-Williams, C., Quesada, A., et al. (2011). Long-term ecosystem networks to record climate change: an international imperative. Antarct. Sci., 23, 209.
  • Wardle, D.A. (2002). Communities and ecosystems: linking the aboveground and belowground components (Monographs in Population Biology 34). Princeton University Press, NJ.
  • Webb, N.R., Coulson, S.J., Hodkinson, I.D., Block, W., Bale, J.S. & Strathdee, A.T. (1998). The effects of experimental temperature elevation on populations of cryptostigmatid mites in high Arctic soils. Pedobiologia, 42, 298308.
  • Willis, K.J., Bennett, K.D., Bhagwat, S.A. & Birks, H.J.B. (2010). 4 °C and beyond: what did this mean for biodiversity in the past? Syst. Biodivers., 8, 39.
  • Wu, T., Ayres, E., Bardgett, R.D., Wall, D.H. & Garey, J.R. (2011). Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. USA, 108, 1772017725.
  • Yergeau, E., Bokhorst, S., Kang, S., Zhou, J., Greer, C.W., Aerts, R., et al. (2012). Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J., 6, 692702.