SEARCH

SEARCH BY CITATION

Keywords:

  • Amplification effect;
  • dilution effect;
  • disease prevalence;
  • disturbance;
  • geographic range overlap;
  • parasites;
  • primates;
  • species richness

Abstract

Many studies have suggested that ecosystem conservation protects human and wildlife populations against infectious disease. We tested this hypothesis using data on primates and their parasites. First, we tested for relationships between species' resilience to human disturbance and their parasite richness, prevalence and immune defences, but found no associations. We then conducted a meta-analysis of the effects of disturbance on parasite prevalence, which revealed no overall effect, but a positive effect for one of four types of parasites (indirectly transmitted parasites). Finally, we conducted intraspecific analyses of malaria prevalence as a function of mammalian species richness in chimpanzees and gorillas, and an interspecific analysis of geographic overlap and parasite species richness, finding that higher levels of host richness favoured greater parasite risk. These results suggest that anthropogenic effects on disease transmission are complex, and highlight the need to define the conditions under which environmental change will increase or decrease disease transmission.