SEARCH

SEARCH BY CITATION

References

  • Ågren, G.I. , Hyvönen, R. , Berglund, S.L. , & Hobbie, S.E. (2013). The critical N:C ratio as a predictor of litter decomposition and soil organic matter stoichiometry, Soil Biol. Biochem., Submitted.
  • Ågren, G.I. & Wetterstedt, J.A.M. (2007). What determines the temperature response of soil organic matter decomposition? Soil Biol. Biochem., 39(7), 17941798.
  • Allison, S.D. (2005). Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett., 8, 626635.
  • Allison, S.D. , Wallenstein, M.D. & Bradford, M.A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci., 3, 336340.
  • Bastian, F. , Bouziri, L. , Nicolardot, B. & Ranjard, L. (2009). Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem., 41, 363275.
  • Bell, R.T. (1993). Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine. In: Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P.F. , Sherr, B.F. , Sherr, E.B. & Cole, J.J. ). Lewis Publishers, Ann Arbor, pp. 495504.
  • Berg, B. & McClaugherty, C. (2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, London.
  • Blagodatskaya, E. & Kuzyakov, Y. (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils, 45, 115131.
  • Boot, C.M. , Schaeffer, S.M. & Schimel, J.P. (2013). Static osmolyte concentrations in microbial biomass during seasonal drought in a California grassland. Soil Biol. Biochem., 57, 356361.
  • Bosatta, E. & Staaf, H. (1982). The control of nitrogen turn-over in forest litter. Oikos, 39, 143151.
  • Brown, J.H. , Gillooly, J.F. , Allen, A.P. , Savage, V.M. & West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 17711789.
  • Button, D.K. (1993). Nutrient-limited microbial-growth kinetics - Overview and recent advances. Antonie Van Leeuwenhoek, 63, 225235.
  • Cebrian, J. & Lartigue, J. (2004). Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol. Monogr., 74, 237259.
  • Chen, C.Y. & Christensen, E.R. (1985). A unified theory for microbial growth under multiple nutrient limitation. Water Res., 19, 791798.
  • Cherif, M. & Loreau, M. (2007). Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in microbial decomposers. Am. Nat., 169, 709724.
  • Cleveland, C.C. & Liptzin, D. (2007). C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235252.
  • Danger, M. , Daufresne, T. , Lucas, F. , Pissard, S. & Lacroix, G. (2008). Does Liebig's law of the minimum scale up from species to communities? Oikos, 117, 17411751.
  • DeLong, J.P. , Okie, J.G. , Moses, M.E. , Sibly, R.M. & Brown, J.H. (2010). Shifts in metabolic scaling, production and efficiency across major evolutionary transitions of life. Proc. Natl Acad. Sci., 107, 1294112945.
  • Dijkstra, P. , Thomas, S.C. , Heinrich, P.L. , Koch, G.W. , Schwartz, E. & Hungate, B.A. (2011). Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem., 43, 20232031.
  • Doi, H. , Cherif, M. , Iwabuchi, T. , Katano, I. , Stegen, J.C. & Striebel, M. (2010). Integrating elements and energy through the metabolic dependencies of gross growth efficiency and the threshold elemental ratio. Oikos, 119, 752765.
  • Eliasson, P.E. & Ågren, G.I. (2011). Feedback from soil inorganic nitrogen on soil organic matter mineralisation and growth in a boreal forest ecosystem. Plant Soil, 338, 193203.
  • Elser, J.J. , Acharya, K. , Kyle, M. , Cotner, J. , Makino, W. , Markow, T. et al. (2003). Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett., 6, 936943.
  • Findlay, S. (1993). Thymidine incorporation into DNA as an estimate of sediment bacterial production. In: Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P.F. , Sherr, B.F. , Sherr, E.B. & Cole, J.J. ). Lewis Publishers, Ann Arbor, pp. 505508.
  • Franklin, O. , Hall, E.K. , Kaiser, C. , Battin, T.J. & Richter, A. (2011). Optimization of biomass composition explains microbial growth-stoichiometry relationships. Am. Nat., 177, E29E42.
  • Frey, S.D. , Gupta, V.V.S.R. , Elliott, E.T. & Paustian, K. (2001). Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biol. Biochem., 33, 17591768.
  • Frost, P.C. , Benstead, J.P. , Cross, W.F. , Hillebrand, H. , Larson, J.H. , Xenopoulos, M.A. et al. (2006). Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol. Lett., 9, 774779.1148
  • Gillooly, J.F. , Allen, A.P. , Brown, J.H. , Elser, J.J. , del Rio, C.M. , Savage, V.M. et al. (2005). The metabolic basis of whole-organism RNA and phosphorus content. Proc. Natl Acad. Sci., 102, 1192311927.
  • del Giorgio, P.A. & Cole, J.J. (1998). Bacterial growth efficiency in natural aquatic ecosystems. Annu. Rev. Ecol. Syst., 29, 503541.
  • Gommers, P.J.F. , van Schie, B.J. , van Dijken, J.P. & Kuenen, J.G. (1988). Biochemical limits to microbial-growth yields: an analysis of mixed substrate utilization. Biotechnol. Bioeng., 32, 8694.
  • Hadas, A. , Parkin, T.B. & Stahl, P.D. (1998). Reduced CO2 release from decomposing wheat straw under N-limiting conditions: simulation of carbon turnover. Eur. J. Soil Sci., 49, 487494.
  • Hart, S.C. , Nason, G.E. , Myrold, D.D. & Perry, D.A. (1994). Dynamics of gross nitrogen transformations in an old-growth forest - the carbon connection. Ecology, 75, 880891.
  • Herron, P.M. , Stark, J.M. , Holt, C. , Hooker, T. & Cardon, Z.G. (2009). Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biol. Biochem., 41, 12621269.
  • Hobbie, J.E. & Hobbie, E.A. (2012). Amino acid cycling in planktonic and soil microbes studied with radioisotopes: measured amino acids in soil do not reflect bioavailability. Biogeochemistry, 107, 339360.
  • Hunt, H.W. , Stewart, J.W.B. & Cole, C.V. (1983). A conceptual model for interactions among carbon, nitrogen, sulphur, and phosphorus in grasslands. In The Major Biogeochemical Cycles and Their Interactions. (eds Bolin, B. , Cook, R.B. ). SCOPE, John Wiley & Sons, New York, pp. 303325.
  • Jones, D.L. , Kielland, K. , Sinclair, F.L. , Dahlgren, R.A. , Newsham, K.K. , Farrar, J.F. et al. (2009). Soil organic nitrogen mineralization across a global latitudinal gradient. Global Biogeochem. Cycles, 23, GB1016. doi:10.1029/2008GB003250.
  • Keiblinger, K.M. , Hall, E.K. , Wanek, W. , Szukics, U. , Hammerle, I. , Ellersdorfer, G. et al. (2010). The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol. Ecol., 73, 430440.
  • Kirchman, D.L. (1993). Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In: Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, PF , Sherr, B.F. , Sherr, E.B. & Cole, J.J. ). Lewis Publishers, Ann Arbor, pp. 509512.
  • Kirchman, D.L. & Ducklow, H.W. (1993). Estimating conversion factors for the thymidine and leucine methods for measuring bacterial production. In: Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P.F. , Sherr, B.F. , Sherr, E.B. & Cole, J.J. ). Lewis Publishers, Ann Arbor, pp. 513518.
  • Ladd, J.N. , Jocteurmonrozier, L. & Amato, M. (1992). Carbon turnover and nitrogen transformations in an alfisol and vertisol amended with 14C[U]glucose and 15N ammonium sulfate. Soil Biol. Biochem., 24, 359371.
  • Larsson, C. , Vonstockar, U. , Marison, I. & Gustafsson, L. (1995). Metabolic Uncoupling in Saccharomyces-Cerevisiae. Thermochim. Acta, 251, 99110.
  • Lettau, T. & Kuzyakov, Y. (1999). Carbon use efficiency of organic substances by soil microbial biomass as a function of chemical and thermodynamical parameters. J. Plant Nutr. Soil Sci., 162, 171177.
  • Lobry, J.R. , Flandrois, J.P. , Carret, G. & Pave, A. (1992). Monod's microbial growth model revisited. Bull. Math. Biol., 54, 117121.
  • Lopez-Urrutia, A. & Moran, X.A.G. (2007). Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology, 88, 817822.
  • Manzoni, S. & Porporato, A. (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem., 41, 13551379.
  • Manzoni, S. , Porporato, A. & Schimel, J. P. (2008). Soil heterogeneity in lumped mineralization-immobilization models. Soil Biol. Biochem., 40, 11371148.
  • Manzoni, S. , Katul, G.G. & Porporato, A. (2009). Analysis of soil carbon transit times and age distributions using network theories. J. Geophys. Res.-Biogeosci., 114, G04025.
  • Manzoni, S. , Trofymow, J.A. , Jackson, R.B. & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr., 80, 89106.
  • Manzoni, S. , Taylor, P. , Richter, A. , Porporato, A. & Ågren, G.I. (2012). Soil carbon and nitrogen mineralization: theory and models across scales. New Phytol., 196, 7991.
  • McGroddy, M.E. , Daufresne, T. & Hedin, L.O. (2004). Scaling of C : N : P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology, 85, 2390240.
  • Miltner, A. , Bombach, P. , Schmidt-Brücken, B. & Kästner, M. (2012). SOM genesis: microbial biomass as a significant source. Biogeochemistry, 111, 4555.
  • Moorhead, D.L. , Lashermes, G. & Sinsabaugh, R.L. (2012). A theoretical model of C- and N-acquiring exoenzyme activities balancing microbial demands during decomposition. Soil Biol. Biochem., 53, 131141.
  • Narang, A. (1998). The steady states of microbial growth on mixtures of substitutable substrates in a chemostat. J. Theor. Biol., 190, 241261.
  • Newell, S.Y. & Fallon, R.D. (1991). Toward a method for measuring instantaneous fungal growth rates in field samples. Ecology, 72, 15471559.
  • Parnas, H. (1975). Model for decomposition of organic material by microorganisms. Soil Biol. Biochem., 7, 161169.
  • Parton, W.J. , Stewart, J.W.B. & Cole, C.V. (1988). Dynamics of C, N, P and S in Grassland Soils - a Model. Biogeochemistry, 5, 109131.
  • Payne, W.J. (1970). Energy yields and growth of heterotrophs. Annu. Rev. Microbiol., 24, 1752.
  • Payne, W.J. & Wiebe, W.J. (1978). Growth yield and efficiency in chemosynthetic microorganisms. Annu. Rev. Microbiol., 32, 155183.
  • Ramirez, K.S. , Craine, J.M. & Fierer, N. (2012). Consistent effects of nitrogen on soil microbial communities and processes across biomes. Glob. Change Biol., 18, 19181927.
  • Resat, H. , Bailey, V. , McCue, L.A. & Konopka, A. (2012). Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microb. Ecol., 63, 883897.
  • Rivkin, R.B. & Legendre, L. (2001). Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science, 291, 23982400.
  • Robinson, C. (2008). Heterotrophic bacterial respiration. In: Microbial Ecology of the Oceans. 2nd edn. (ed Kirchman, D.L. ). John Wiley & Sons Inc, New York, pp. 299334.
  • Roels, J.A. (1980). Application of Macroscopic Principles to Microbial-Metabolism. Biotechnol. Bioeng., 22, 24572514.
  • Rousk, J. & Bååth, E. (2011). Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol., 78, 1730.
  • Runyan, C.W. & D'Odorico, P. (2012). Hydrologic controls on phosphorus dynamics: a modeling framework. Adv. Water Resour., 35, 94109.
  • Russell, J.B. & Cook, G.M. (1995). Energetics of bacterial-growth - Balance of anabolic and catabolic reactions. Microbiol. Rev., 59, 4862.
  • Sardens, J. , Rivas-Ubach, A. & Peñuelas, J. (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 111, 139.
  • Schimel, J.P. & Weintraub, M.N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem., 35, 549563.
  • Shen, J. & Bartha, R. (1996). Metabolic efficiency and turnover of soil microbial communities in biodegradation tests. Appl. Environ. Microbiol., 62, 24112415.
  • Sierra, C.A. (2012). Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry, 108, 115.
  • Sinsabaugh, R.L. & Follstad Shah, J.J. (2010). Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecology, 91, 14551465.
  • Sinsabaugh, R.L. & Follstad Shah, J.J. (2012). Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst., 43, 313342.
  • Sistla, S.A. & Schimel, J.P. (2012). Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol., 196, 6878.
  • Six, J. , Frey, S.D. , Thiet, R.K. & Batten, K.M. (2006). Bacterial and fungal contribution to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J., 70, 555569.
  • Sterner, R.W. & Elser, J.J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to The Biosphere. Princeton University, Princeton.
  • Sterner, R.W. , Andersen, T. , Elser, J.J. , Hessen, D.O. , Hood, J.M. , McCauley, E. et al. (2008). Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwater. Limnol. Oceanogr., 5, 11691180.
  • Stursova, M. , Zifcakova, L. , Leigh, M.B. , Burgess, R. & Baldrian, P. (2012). Cellulose utilization in forest litters and soils: identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol., 80, 735746.
  • Su, R. , Amonette, R. , Kuehn, K.A. , Sinsabaugh, R.L. & Neely, R.K. (2007). Microbial dynamics associated with decaying Typha angustifolia litter in two contrasting Lake Erie coastal wetlands. Aquat. Microb. Ecol., 46, 295307.
  • Tiemann, L.K. & Billings, S.A. (2011). Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol. Biochem., 43, 18371847.
  • Touratier, F. , Legendre, L. & Vezina, A. (1999). Model of bacterial growth influenced by substrate C : N ratio and concentration. Aquat. Microb. Ecol., 19, 105118.
  • Uhlířová, E. , Elhottová, D. , Tříska, J. & Šantrůčková, H. (2005). Physiology and microbial community structure in soil at extreme water content. Folia Microbiol., 50, 161166.
  • Van Bodegom, P. (2007). Microbial maintenance: a critical review on its quantification. Microb. Ecol., 53, 513523.
  • Vetter, Y.A. , Deming, J.W. , Jumars, P.A. & Krieger-Grockett, B.B. (1998). A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol., 36, 7592.
  • Von Stockar, U. & Marison, I.W. (1993). The definition of energetic growth efficiencies for aerobic and anerobic microbial growth and their determination by calorimetry and other means. Thermochim. Acta, 229, 157172.
  • Wagai, R. , Kishimoto-Mo, A.W. , Yonemura, S. , Shirato, Y. , Hiradate, S. & Yagasaki, Y. (2013). Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Glob. Change Biol., 19, 11141125.
  • Wang, G.S. & Post, W.M. (2012). A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiol. Ecol., 81, 610617.
  • Wang, G. , Post, W.M. & Mayes, M.A. (2012a). Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl., 23, 255272.
  • Wang, G. , Post, W.M. , Mayes, M.A. , Frerichs, J.T. & Sindhu, J. (2012b). Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics. Soil Biol. Biochem., 48, 2838.
  • Waring, B.G. , Weintraub, S.R. & Sinsabaugh, R.L. (2013). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, DOI: 10.1007/s10533-013-9849-x.
  • Wetterstedt, J.A.M. & Ågren, G.I. (2011). Quality or decomposer efficiency - which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology. Biogeosciences, 8, 477487.
  • Williams, P.J.I. (1973). The validity of the application of simple kinetic analysis to heterogeneous microbial populations. Limnol. Oceanogr., 18, 159165.
  • Yvon-Durocher, G. , Caffrey, J.M. , Cescatti, A. , Dossena, M. , del Giorgio, P. , Gasol, J.M. et al. (2012). Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature, 487, 472476.
  • Zeglin, L.H. , Kluber, L.A. & Myrold, D.D. (2012). The importance of amino sugar turnover to C and N cycling in organic horizons of old growth Douglas-fir forest soils colonized by ectomycorrhizal mats. Biogeochemistry, 112, 679693.
  • Ziegler, S.E. , White, P.M. , Wolf, D.C. & Thoma, G.J. (2005). Tracking the fate and recycling of C-13-labeled glucose in soil. Soil Sci., 170, 767778.
  • Zinn, M. , Witholt, B. & Egli, T. (2004). Dual nutrient limited growth: models, experimental observations, and applications. J. Biotechnol., 113, 263279.