Get access

Winners and losers in the competition for space in tropical forest canopies



Trees compete for space in the canopy, but where and how individuals or their component parts win or lose is poorly understood. We developed a stochastic model of three-dimensional dynamics in canopies using a hierarchical Bayesian framework, and analysed 267 533 positive height changes from 1.25 m pixels using data from airborne LiDAR within 43 ha on the windward flank of Mauna Kea. Model selection indicates a strong resident's advantage, with 97.9% of positions in the canopy retained by their occupants over 2 years. The remaining 2.1% were lost to a neighbouring contender. Absolute height was a poor predictor of success, but short stature greatly raised the risk of being overtopped. Growth in the canopy was exponentially distributed with a scaling parameter of 0.518. These findings show how size and spatial proximity influence the outcome of competition for space, and provide a general framework for the analysis of canopy dynamics.