SEARCH

SEARCH BY CITATION

References

  • Allison, S.D. (2005). Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett., 8, 626635.
  • Allison, S.D. (2012). A trait-based approach for modelling microbial litter decomposition. Ecol. Lett., 15, 10581070.
  • Allison, S.D., Wallenstein, M.D. & Bradford, M.A.(2010). Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci., 3, 336340.
  • Bryan, A.K., Goranov, A., Amon, A. & Manalis, S.R. (2010). Measurement of mass, density, and volume during the cell cycle of yeast. Proc. Natl Acad. Sci. USA, 107, 9991004.
  • Cherif, M. & Loreau, M. (2007). Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in. Am. Nat., 169, 709724.
  • Cleveland, C.C. & Liptzin, D. (2007). C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235252.
  • Clode, P.L., Kilburn, M.R., Jones, D.L., Stockdale, E.A., Cliff, J.B., Herrmann, A.M. et al. (2009). In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol., 151, 17511757.
  • Cornforth, D.M., Sumpter, D.J.T., Brown, S.P. & Brännström, Å. (2012). Synergy and group size in microbial cooperation. Am. Nat., 180, 296305.
  • Czárán, T. & Hoekstra, R.F. (2009). Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLoS ONE, 4, e6655.
  • Folse, H.J. & Allison, S.D. (2012). Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front. Microbiol., 3, 338.
  • Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H. et al. (2010). Diversity meets decomposition. Trends Ecol. Evol., 25, 372380.
  • Ginovart, M., López, D. & Gras, A. (2005). Individual-based modelling of microbial activity to study mineralization of C and N and nitrification process in soil. Nonlinear Anal. Real World Appl., 6, 773795.
  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F. et al. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310, 987991.
  • Hellweger, F.L. & Bucci, V. (2009). A bunch of tiny individuals—Individual-based modeling for microbes. Ecol. Modell., 220, 822.
  • Ingwersen, J., Poll, C., Streck, T. & Kandeler, E. (2008). Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biol. Biochem., 40, 864878.
  • Johnson, D.R., Goldschmidt, F., Lilja, E.E. & Ackermann, M. (2012). Metabolic specialization and the assembly of microbial communities. ISME J., 6, 19851991.
  • Keiblinger, K.M., Schneider, T., Roschitzki, B., Schmid, E., Eberl, L., Hämmerle, I. et al. (2012). Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression. Biogeosciences, 9, 45374551.
  • Kirchman, D.L. (2012). Processes in Microbial Ecology. Oxford University Press, New York.
  • Leitner, S., Wanek, W., Wild, B., Haemmerle, I., Kohl, L., Keiblinger, K.M. et al. (2012). Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter. Soil Biol. Biochem., 50, 174187.
  • Manzoni, S. & Porporato, A. (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem., 41, 13551379.
  • Manzoni, S., Jackson, R.B., Trofymow, J.A. & Porporato, A. (2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684686.
  • Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G.I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol., 196, 7991.
  • Moore, T.R., Trofymow, J.A., Prescott, C.E., Fyles, J. & Titus, B.D (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 4662.
  • Moorhead, D.L. & Sinsabaugh, R.L. (2000). Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Appl. Soil Ecol., 14, 7179.
  • Moorhead, D.L., Sinsabaugh, R.L., Linkins, A.E. & Reynolds, J.F. (1996). Decomposition processes: modelling approaches and applications. Sci. Total Environ., 9697, 137149.
  • Mooshammer, M., Wanek, W., Schnecker, J., Wild, B., Leitner, S., Hofhansl, F. et al. (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93, 770782.
  • Osono, T. (2007). Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res., 22, 955974.
  • Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361364.
  • Philippot, L., Andersson, S.G.E., Battin, T.J., Prosser, J.I., Schimel, J.P., Whitman, W.B. et al. (2010). The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol., 8, 523529.
  • Prosser, J.I. (2012). Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol. Ecol., 81, 507519.
  • Romaní, A.M., Fischer, H., Mille-Lindblom, C. & Tranvik, L.J. (2006). Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology, 87, 25592569.
  • Romanova, N.D. & Sazhin, A.F.(2010). Relationships between the cell volume and the carbon content of bacteria. Oceanology, 50, 522530.
  • Rutz, B.A. & Kieft T.L. (2004). Phylogenetic characterization of dwarf archaea and bacteria from a semiarid soil. Soil Biol. Biochem., 36, 825833.
  • Schimel, J.P. & Schaeffer, S.M. (2012). Microbial control over carbon cycling in soil. Front. Microbiol., 3, 348.
  • Schimel, J.P. & Weintraub, M.N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem., 35, 549563.
  • Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 4956.
  • Schneider, T., Keiblinger, K.M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B. et al. (2012). Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J., 6, 17491762.
  • Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L. & Richter, A. (2013). Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett., 16, 930939.
  • Sterner, R.W. & Elser, J.E. (2002a). Stoichiometry and Homeostasis. In: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, pp. 143.
  • Sterner, R.W. & Elser, J.E. (2002b). Stoichiometry in communities: dynamics and interactions. In: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, pp. 262312.
  • Tilman, D. (1982). Resource Competition and Community Structure. Monographs, Princeton University Press, Princeton, New Jersey.
  • Van Oijen, M., Rougier, J. & Smith, R. (2005). Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol., 25, 915927.
  • Voříšková, J. & Baldrian, P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J., 7, 477486.
  • Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A. & Richter, A. (2010). Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biol. Biochem., 42, 12931302.
  • Wang, G. & Post, W.M. (2013). A note on the reverse Michaelis-Menten kinetics. Soil Biol. Biochem., 57, 946949.
  • Wickings, K., Grandy, A.S., Reed, S.C. & Cleveland, C.C. (2012). The origin of litter chemical complexity during decomposition. Ecol. Lett., 15, 11801188.
  • Wieder, W.R., Bonan, G.B. & Allison, S.D. (2013). Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change, 3, 909912.