SEARCH

SEARCH BY CITATION

References

  • Ackerly, D.D., Dudley, S.A., Sultan, S.E., Schmitt, J., Coleman, J.S., Linder, C.R., et al. (2000). The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience, 50, 979995.
  • Ainsworth, E.A. & Long, S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165, 351371.
  • Barrett, R.D.H. & Schluter, D. (2007). Adaptation from standing genetic variation. Trends Ecol. Evol., 23, 3844.
  • Bloom, A.J., Asensio, J.S.R., Randall, L., Rachmilevitch, S., Cousins, A.B. & Carlisle, E.A. (2012). CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology, 93, 355367.
  • Bone, E. & Farres, A. (2001). Trends and rates of microevolution in plants. Genetica, 112, 165182.
  • Bowes, G. (1993). Facing the inevitable: plants and increasing atmospheric CO2. Ann. Rev. Plant Physiol. Plant Mol. Biol., 44, 309332.
  • Bradshaw, A.D. & McNeilly, T. (1991). Evolutionary response to global climatic change. Ann. Bot. (London), 67, 514.
  • Buckley, T.N. & Schymanski, S.J. (2014). Stomatal optimisation in relation to atmospheric CO2. New Phytol., 201, 372377.
  • Case, A.L., Curtis, P.S. & Snow, A.A. (1998). Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae). Am. J. Bot., 85, 253258.
  • Collins, S. & Bell, G. (2004). Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 431, 566569.
  • Drake, B.G., Gonzàlez-Meler, M.A. & Long, S.P. (1997). More efficient plants: a consequence of rising atmospheric CO2? Ann. Rev. Plant Physiol. Plant Mol. Biol., 48, 609639.
  • Franks, S.J., Sims, S. & Weis, A.E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA, 104, 12781282.
  • Franks, P.J., Adams, M.A., Amthor, J.S., Barbour, M.M., Berry, J.A., Ellsworth, D.S., et al. (2013). Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol., 197, 10771094.
  • Frenck, G., van der Linden, L., Mikkelsen, T.N., Brix, H. & Jørgensen, R.B. (2013). Response to multi-generational selection under elevated [CO2] in two temperature regimes suggests enhanced carbon assimilation and increased reproductive output in Brassica napus L. Ecol. Evol., 3, 11631172.
  • Geber, M.A. & Griffen, L.R. (2003). Inheritance and natural selection on functional traits. Int. J. Plant Sci., 164, S21S42.
  • Hunter, R. (1991). Bromus invasions on the Nevada test site - present status of B. rubens and B. tectorum with notes on their relationship to disturbance and altitude. Great Basin Nat., 51, 176182.
  • Huxman, T.E. & Smith, S.D. (2001). Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave Desert. Oecologia, 128, 193201.
  • Huxman, T.E., Hamerlynck, E.P., Jordan, D.N., Salsman, K.J. & Smith, S.D. (1998). The effects of parental CO2 environment on seed quality and subsequent seedling performance in Bromus rubens. Oecologia, 114, 202208.
  • Huxman, T.E., Hamerlynck, E.P. & Smith, S.D. (1999). Reproductive allocation and seed production in Bromus madritensis ssp rubens at elevated atmospheric CO2. Funct. Ecol., 13, 769777.
  • Huxman, T.E., Charlet, T.N., Grant, C. & Smith, S.D. (2001). The effects of parental CO2 and offspring nutrient environment on initial growth and photosynthesis in an annual grass. Int. J. Plant Sci., 162, 617623.
  • Huxman, T.E., Kimball, S., Angert, A.L., Gremer, J.R., Barrongafford, G.A. & Venable, D.L. (2013). Understanding past, contemporary, and future dynamics of plants, populations, and communities using Sonoran Desert winter annual plants. Am. J. Bot., 100, 13691380.
  • IPCC. (2013). Climate Change 2013: The Physical Science Basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T.F.,, Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A. , Xia, Y., Bex, V., & Midgley, P.M.). Cambridge University Press, Cambridge, p. 1535.
  • Jordan, D.N., Zitzer, S.F., Hendrey, G.R., Lewin, K.F., Nagy, J., Nowak, R.S., et al. (1999). Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Global Change Biol., 5, 659668.
  • Jurand, B.S., Abella, S.R. & Suazo, A.A. (2013). Soil seed bank longevity of the exotic annual grass Bromus rubens in the Mojave Desert, USA. J. Arid Environ., 94, 6875.
  • Kingsolver, J.G. (1996). Physiological sensitivity and evolutionary responses to climate change. In: Carbon Dioxide, Populations, and Communities. (eds Körner, C., Bazzaz, F.A.). Academic Press, San Diego, CA, pp. 312.
  • Lau, J.A., Shaw, R.G., Reich, P.B., Shaw, F.H. & Tiffin, P. (2007). Strong ecological but weak evolutionary effects of elevated CO2 on a recombinant inbred population of Arabidopsis thaliana. New Phytol., 175, 351362.
  • Lau, J.A., Shaw, R.G., Reich, P.B. & Tiffin, P. (2014). Indirect effects drive evolutionary responses to global change. New Phytol., 201, 335343.
  • Leakey, A.D.B. & Lau, J.A. (2012). Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2]. Philos. Trans. R. Soc. Lond. B, 367, 613629.
  • Lee, C.E. (2002). Evolutionary genetics of invasive species. Trends Ecol. Evol., 17, 386391.
  • Long, S.P., Ainsworth, E.A., Rogers, A. & Ort, D.R. (2004). Rising atmospheric carbon dioxide: plants face the future. Ann. Rev. Plant Biol., 55, 591628.
  • Morgan, J.A., Pataki, D.E., Körner, C., Clark, H., Del Grosso, S.J., Grünzweig, J.M., et al. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO₂. Oecologia, 140, 1125.
  • Newingham, B.A., Vanier, C.H., Kelly, L.J., Charlet, T.N. & Smith, S.D. (2014). Does a decade of elevated [CO2] affect a desert perennial plant community? New Phytol., 201, 498504.
  • Panio, G., Motzo, R., Mastrangelo, A.M., Marone, D., Cattivelli, L., Giunta, F. et al., et al. (2013). Molecular mapping of stomatal-conductance-related traits in durum wheat (Triticum turgidum ssp. durum). Ann. Appl. Biol., 162, 258270.
  • Pigliucci, M., Murren, C.J. & Schlichting, C.D. (2006). Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol., 209, 23622367.
  • Rice, K.J. & Emery, N.C. (2003). Managing microevolution: restoration in the face of global change. Front. Ecol. Environ., 1, 469478.
  • Roff, D.A. (2007). Evolutionary Quantitative Genetics. Chapman & Hall, New York, NY, p. 494.
  • Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., et al. (2001). The population biology of invasive species. Ann. Rev. Ecol. Syst., 32, 305332.
  • Scheiner, S.M. (1993). Genetics and evolution of phenotypic plasticity. Ann. Rev. Ecol. Syst., 24, 3568.
  • Schmid, B., Birrer, A. & Lavigne, C. (1996). Genetic variation in the response of plant populations to elevated CO2 in a nutrient-poor, calcareous grassland. In: Carbon Dioxide, Populations, and Communities. (eds Körner, C., Bazzaz, F.A.). Academic Press, San Diego, CA, pp. 3150.
  • Smith, S.D., et al. (1997). Physiological Ecology of North American Desert Plants. Springer-Verlag, Berlin, p. 286.
  • Smith, S.D., Huxman, T.E., Zitzer, S.F., Charlet, T.N., Housman, D.C., Coleman, J.S., et al. (2000). Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 408, 7982.
  • Templeton, A.R. & Levin, D.A. (1979). Evolutionary consequences of seed pools. Am. Nat., 114, 232249.
  • Thomas, S.C. & Jasienski, M. (1996). Genetic variability and the nature of microevolutionary responses to elevated CO2. In: Carbon Dioxide, Populations, and Communities. (eds Körner, C., Bazzaz, F.A.). Academic Press, San Diego, CA, pp. 5181.
  • Tousignant, D. & Potvin, C. (1996). Selective responses to global change: experimental results on Brassica juncea (L.) Czern. In: Carbon Dioxide, Populations, and Communities (ed. Körner, C. & Bazzaz, F.A.). Academic Press, San Diego, CA, pp. 2330.
  • Tyree, M.T. & Alexander, J.D. (1993). Plant water relations and the effects of elevated CO2: a review and suggestions for future research. Vegetatio, 104, 4762.
  • Waddington, C.H. (1961). Genetic assimilation. Adv. Genet., 10, 257290.
  • Ward, J.K., Antonovics, J., Thomas, R.B. & Strain, B.R. (2000). Is atmospheric CO2 a selective agent on model C-3 annuals? Oecologia, 123, 330341.
  • Wieneke, S., Prati, D., Brandl, R., Stocklin, J. & Auge, H. (2004). Genetic variation in Sanguisorba minor after 6 years in situ selection under elevated CO2. Global Change Biol., 10, 13891401.
  • Williams, J.L., Auge, H. & Maron, J.L. (2008). Different gardens, different results: native and introduced populations exhibit contrasting phenotypes across common gardens. Oecologia, 157, 239248.