• cuticle deposition rhythm;
  • diapause;
  • photoperiodic counter;
  • photoperiodic response;
  • photoperiodic time measurement;
  • Riptortus pedestris


Functional involvement of a circadian clock in photoperiodism for measuring the length of day or night had been proposed more than 70 years ago, and various physiological experiments have supported the idea. However, the molecular basis of a circadian clock has remained veiled in insects. Nevertheless, our knowledge of the functional elements of a circadian clock governing circadian rhythmicity has advanced rapidly. Since both circadian rhythms and photoperiodism depend on the daily cycles of environmental changes, it is easy to assume that the same clock elements are involved in both processes. Recently, the RNA interference (RNAi) technique clarified that the molecular machinery of a circadian clock governing photoperiodism is identical to that governing circadian rhythmicity. Here, I review the theoretical background of photoperiodic responses incorporating a circadian clock(s) and recent progress on the molecular clockwork involved in photoperiodism in the bean bug Riptortus pedestris and other insect species. I have focused on the intense controversy regarding the involvement of a circadian clock in insect photoperiodism.