Simultaneous EEG and fMRI recordings (EEG-fMRI) in children with epilepsy



By combining electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) it is possible to describe blood oxygenation level–dependent (BOLD) signal changes related to EEG patterns. This way, EEG-pattern–associated networks of hemodynamic changes can be detected anywhere in the brain with good spatial resolution. This review summarizes EEG-fMRI studies that have been performed in children with epilepsy. EEG-fMRI studies in focal epilepsy (structural and nonlesional cases, benign epilepsy with centrotemporal spikes), generalized epilepsy (especially absence epilepsy), and epileptic encephalopathies (West syndrome, Lennox-Gastaut syndrome, continuous spike and waves during slow sleep, and Dravet syndrome) are presented. Although EEG-fMRI was applied mainly to localize the region presumably generating focal interictal discharges in focal epilepsies, EEG-fMRI identified underlying networks in patients with generalized epilepsies and thereby contributed to a better understanding of these epilepsies. In epileptic encephalopathies a specific fingerprint of hemodynamic changes associated with the particular syndrome was detected. The value of the EEG-fMRI technique for diagnosis and investigation of pathogenetic mechanisms of different forms of epilepsy is discussed.