SEARCH

SEARCH BY CITATION

Keywords:

  • Epileptic encephalopathy;
  • Non–rapid-eye-movement sleep discharges;
  • Neuropsychological networks;
  • Child development

Summary

The International League Against Epilepsy (ILAE) Commission report on classification and terminology indicates that “diagnosing an individual as having an encephalopathic course requires demonstration of a failure to develop as expected relative to the same-aged peers or to regress in abilities.” In this chapter, basing our discussion on the theoretical framework of neuroconstructivism, on the latest results deriving from functional neuroimaging and on the concept of system epilepsy, we use continuous spike-waves during slow-wave sleep (CSWS) as an example of how non–rapid eye movement (NREM) sleep spikes interfere with the organization and consolidation of neuropsychological networks in the sensitive phase of development, affecting also interconnected systems. Indeed, recent discoveries show that the normal overnight downscaling of slow wave activity (SWA) from the first to the last hours of sleep is absent in electrical status epilepticus during sleep (ESES) patients, thus impairing the neural process and possibly the local plastic changes associated with learning and other cognitive functions. Moreover, specific patterns of spike-induced activation (especially in perisylvian and/or prefrontal areas) and deactivation of default mode network (DMN) have been shown in patients with CSWS. Consequently, to date, we may conceive that the possible mechanisms underlying neuropsychological disorders in encephalopathic epilepsy (EE) may be double, since NREM sleep interictal epileptic discharges (IEDs) induce both a pathologic activation in epileptogenic areas and a pathologic deactivation of DMN beyond the epileptogenic zone. The growing body of literature on the effects of ESES in CSWS provides us with increasing knowledge on the complexity of brain development and a better understanding of plasticity, enlightening the pathogenesis of damage on developing neuropsychological functions. Finally, the need for an individually tailored interpretation of the neuropsychological testing results, expected to integrate neurophysiology and functional neuroimaging data, is suggested.