• antipredator behaviour;
  • group living;
  • group size;
  • herbivores;
  • mixed-species group;
  • predator detection;
  • vigilance


Prey can obtain valuable benefits from associating with other species if heterospecifics help to detect predators or locate good food patches. In mixed-species groups, how species respond to the presence of other species remains a poorly explored question although it might give crucial insights into mechanisms underlying the interspecific coexistence. We studied temporary mixed-species groups of large herbivores in Hwange National Park (Zimbabwe) between the common impala (Aepyceros melampus), the focal species here, and bigger species including the plains zebra (Equus quagga), the greater kudu (Tragelaphus strepsiceros) or the blue wildebeest (Connochaetes taurinus). In the Hwange savanna, the focal and smaller species are exposed to a larger range of predators than the associated species. In this context, we investigated how impalas adjusted their vigilance with group size comparing impala-only and mixed-species groups and whether the identity of heterospecifics affected vigilance of impalas. Our study showed that the time impalas spent in vigilance significantly decreased with group size when they formed impala-only groups, whereas it did not significantly vary with group size in mixed-species groups. Moreover, in mixed-species groups, impalas did not adjust their time spent in vigilance with the proportion of conspecifics and the identity of the associated species. Thus, the mechanism underlying the difference of impalas' behavioural adjustment of vigilance with group size between single- and mixed-species groups seemed to be related to the presence but not to the number and the identity of heteropecifics. Finally, we discuss the concept that larger and dominant heterospecifics were likely to increase competition for food access, thereby forcing higher vigilance of impalas, outweighing any reduction from collective vigilance.