SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • Badger, M. R., T. J. Andrews, S. Whitney, M. Ludwig, D. C. Yellowlees, W. Leggat, and G. D. Price. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76:10521071.
  • Badger, M. R., D. Hanson, and G. D. Price. 2002. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Func. Plant Biol. 29:161173.
  • Beaufort, L., I. Probert, T. de Garidel-Thoron, E. M. Bendif, D. Ruiz-Pino, N. Metzl, C. Goyet, N. Buchet, P. Coupel, M. Grelaud, B. Rost, R. E. M. Rickaby, and C. de Vargas. 2011. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476:8083.
  • Burkhardt, S., I. Zondervan, and U. Riebesell. 1999. Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: a species comparison. Limnol. Oceanogr. 44:683690.
  • Collins, S., and G. Bell. 2004. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566569.
  • Collins, S., D. Sültemeyer, and G. Bell. 2006. Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant, Cell Environ. 29:18121819.
  • De Bodt, C., N. Van Oostende, J. Harlay, K. Sabbe, and L. Chou. 2010. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences 7:14011412.
  • Doney, S., V. J. Fabry, R. A. Feely, and J. A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci 1:16992.
  • Feng, Y., M. E. Warner, Y. Zhang, J. Sun, F. X. Fu, J. M. Rose, and D. A. Hutchins. 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43:8798.
  • Fiorini, S., J. J. Middelburg, and J. P. Gattuso. 2011a. Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquat. Microb. Ecol 64:221232.
  • Fiorini, S., J. J. Middelburg, and J. P. Gattuso. 2011b. Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haplodi and diploid life stages. J. Phycol 47:12811291.
  • Gao, K., Z. Ruan, V. E. Villafañe, J. P. Gattuso, and E. W. Helbling. 2009. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 54:18551862.
  • Gao, K., Z. Ruan, V. E. Villafañe, J. P. Gattuso, and E. W. Helbling. 2012. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat. Climate Change 2:519523.
  • Giordano, M., J. Beardall, and J. A. Raven. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99131.
  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403424.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, eds. 2001. Climate change 2001: the scientific basis. Vol. 881. Cambridge Univ. Press, Cambridge, U.K.
  • Hutchins, D. A., M. R. Mulholland, and F. X. Fu. 2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22:128145.
  • Hutchins, D. A., M. R. Mulholland, and F. X. Fu. 2011. Oceanography: forecasting the rain ratio. Nature 476:4142.
  • Iglesias-Rodriguez, M. D., P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, and P. Von Dassow. 2008. Phytoplankton calcification in a high-CO2 world. Science 320:336340.
  • Langer, G., M. Geisen, K. H. Baumann, J. Kläs, U. Riebesell, S. Thoms, and J. R. Young. 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. 7:Q09006.
  • Langer, G., M. Geisen, K. H. Baumann, J. Kläs, U. Riebesell, S. Thoms, and J. R. Young. 2007. Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: Independence of growth and calcification rate. Geochem. Geophys. Geosyst. 8:Q05007.
  • Langer, G., M. Geisen, K. H. Baumann, J. Kläs, U. Riebesell, S. Thoms, and J. R. Young. 2009. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6:26372646.
  • Lefebvre, S. C., I. Benner, J. H. Stillman, A. E. Parker, M. K. Drake, P. E. Rossignol, K. M. Okimura, T. Komada, and E. J. Carpenter. 2012. Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle. Global. Change. Biol. 18:493503.
  • Lohbeck, K. T., U. Riebesell, and T. B. H. Reusch. 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5:346351.
  • Malin, G., and G. O. Erst. 1997. Algal production of dimethyl sulfide and its atmospheric role. J. Phycol. 33:889896.
  • Morel, F. M. M., J. Rueter, D. M. Anderson, and R. Guillard. 1979. Aquil: a chemically defined phytoplankton culture medium for trace metal studies. J. Phycol 15:135141.
  • Müller, M. N., K. G. Schulz, and U. Riebesell. 2010. Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences 7:11091116.
  • Nielsen, M. V. 1995. Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. J. Phycol. 31:715719.
  • Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681686.
  • Pörtner, H. O., and A. P. Farrell. 2008. Physiology and climate change. Science 322:690692.
  • Paasche, E. 2002. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40:503529.
  • Porra, R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73:149156.
  • Raven, J. A. 1997. The role of marine biota in the evolution of terrestrial biota: gases and genes. Biogeochemistry 39:139164.
  • Raven, J. A.. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth. Res. 109:281296.
  • Rickaby, R. E. M., J. Henderiks, and J. N. Young. 2010. Perturbing phytoplankton: response isotope fractionation with changing carbonate chemistry in two coccolithphore species. Climate Past 6:771785.
  • Riebesell, U., and P. D. Tortell. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364367.
  • Riebesell, U., and P. D. Tortell. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545548.
  • Riebesell, U., and P. D. Tortell. 2011. Effects of ocean acidification on pelagic organisms and ecosystems. Pp. 99116 in J-P. Gattuso and L. Hansson, eds. Ocean acidification. Oxford Univ. Press, Oxford, U.K.
  • Sekino, K., and Y. Shiraiwa. 1994. Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant Cell Physiol. 35:353361.
  • Sikes, C. S., and A. Wheeler. 1982. Carbonic anhydrase and carbon fixation in coccolithphorids. J. Phycol. 18:423426.
  • Wu, Y., K. S. Gao, and U. Riebesell. 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:29152923.
  • Xu, K., K. S. Gao, V. E. Villafañe, and E. W. Helbling. 2011. Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of the calcified coccoliths. Biogeosciences 8:14411452.
  • Xu, K., and K. S. Gao. 2012. Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi. Plant Cell Physiol. 53:12671274.
  • Yang, G. Y., and K. S. Gao. 2012. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Mar. Environ. Res. 79:142151.

Associate Editor: S. Collins