SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • Aardema, M. L., Y. Zhen, and P. Andolfatto. 2012. The evolution of cardenolide-resistant forms of Na+,K+-ATPase in Danainae butterflies. Mol. Ecol. 21:340349.
  • Ackery, P. R. 1993. Host plant exploitation by aposematic nymphalid butterflies: pre-adaptation versus stepwise sequestration. Nat. Hist. Mus. LA Cty. Sci. Ser. 38:7982.
  • Ackery, P. R., and R. I. Vane-Wright. 1984. Milkweed butterflies: their cladistics and biology. Cornell Univ. Press, New York.
  • Agrawal, A. A., G. Petschenka, R. A. Bingham, M. G. Weber, and S. Rasmann. 2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 194:2845.
  • Askew, G. R., and J. B. Lingrel. 1994. Identification of an amino acid substitution in human alpha 1 Na,K-ATPase which confers differentially reduced affinity for two related cardiac glycosides. J. Biol. Chem. 269:2412024126.
  • Berenbaum, M. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37:163179.
  • Brower, A. V. Z., N. Wahlberg, J. R. Ogawa, M. Boppré, and R. I. Vane-Wright. 2010. Phylogenetic relationships among genera of danaine butterflies (Lepidoptera: Nymphalidae) as implied by morphology and DNA sequences. Syst. Biodivers. 8:7589.
  • Brower, L. P., W. N. Ryerson, L. L. Coppinger, and S. C. Glazier. 1968. Ecological chemistry and the palatability spectrum. Science 161:13491350.
  • Burns, E. L., and E. M. Price. 1993. Random mutagenesis of the sheep Na,K-ATPase alpha-1 subunit generates a novel T797N mutation that results in a ouabain-resistant enzyme. J. Biol. Chem. 268:2563225635.
  • Burns, E. L., R. A. Nicholas, and E. M. Price. 1996. Random mutagenesis of the sheep Na,K-ATPase α1 subunit generating the ouabain-resistant mutant L793P. J. Biol. Chem. 271:1587915883.
  • Canessa, C. M., J. D. Horisberger, D. Louvard, and B. C. Rossier. 1992. Mutation of a cysteine in the first transmembrane segment of Na,K-ATPase alpha subunit confers ouabain resistance. EMBO J. 11:16811687.
  • Cheenpracha, S., C. Karalai, Y. Rat-a-pa, C. Ponglimanont, and K. Chantrapromma. 2004. New cytotoxic cardenolide glycoside from the seeds of Cerbera manghas. Chem. Pharm. Bull. 52:10231025.
  • Cohen, J. A. 1985. Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications. J. Chem. Ecol. 11:85103.
  • Croyle, M. L., A. L. Woo, and J. B. Lingrel. 1997. Extensive random mutagenesis analysis of the Na+/K+-ATPase α subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity implications for ouabain binding. Eur. J. Biochem. 248:488495.
  • Dobler, S., S. Dalla, V. Wagschal, and A. A. Agrawal. 2012. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proc. Natl. Acad. Sci. USA 109:1304013045.
  • Ehrlich, P. R., and P. H. Raven. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586608.
  • Emery, A. M., P. F. Billingsley, P. D. Ready, and M. B. A. Djamgoz. 1998. Insect Na+/K+-ATPase. J. Insect Physiol. 44:197210.
  • Feng, J., and J. B. Lingrel. 1994. Analysis of amino acid residues in the H5-H6 transmembrane and extracellular domains of Na,K-ATPase α subunit identifies threonine 797 as a determinant of ouabain sensitivity. Biochemistry 33:42184224.
  • Futuyma, D. J., and A. A. Agrawal. 2009. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. USA 106:1805418061.
  • Haskell, J. A., R. D. Clemons, and W. R. Harvey. 1965. Active transport by the Cecropia midgut. I. Inhibitors, stimulants, and potassium-transport. J. Cell. Physiol. 65:4555.
  • Holzinger, F., and M. Wink. 1996. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+,K+-ATPase. J. Chem. Ecol. 22:19211937.
  • Holzinger, F., C. Frick, and M. Wink. 1992. Molecular basis for the insensitivity of the Monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett. 314:477480.
  • Jungreis, A. M., and G. L. Vaughan. 1977. Insensitivity of lepidopteran tissues to ouabain: absence of ouabain binding and Na+-K+ ATPases in larval and adult midgut. J. Insect Physiol. 23:503509.
  • Lingrel, J. B. 1992. Na,K-ATPase: isoform structure, function, and expression. J. Bioenerg. Biomembr. 24:263270.
  • Malcolm, S., and M. Rothschild. 1983. A danaid mullerian mimic, Euploea core amymone (Cramer) lacking cardenolides in the pupal and adult stages. Biol. J. Linn. Soc. 19:2733.
  • Malcolm, S. B., and L. P. Brower. 1989. Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284295.
  • Mayer, U., E. Wagenaar, J. H. Beijnen, J. W. Smit, D. K. F. Meijer, J. van Asperen, P. Borst, and A. H. Schinkel. 1996. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr1a P-glycoprotein. Brit. J. Pharmacol. 119:10381044.
  • Mebs, D., R. Zehner, and M. Schneider. 2000. Molecular studies on the ouabain binding site of the Na+, K+-ATPase in milkweed butterflies. Chemoecology 10:201203.
  • Mebs, D., E. Reuss, and M. Schneider. 2005. Studies on the cardenolide sequestration in African milkweed butterflies (Danaidae). Toxicon 45:581584.
  • Mebs, D., M. Wagner, S. Toennes, C. Wunder, and M. Boppré. 2012. Selective sequestration of cardenolide isomers by two species of Danaus butterflies (Lepidoptera: Nymphalidae: Danainae). Chemoecology 22:269272.
  • Murray, C. L., M. Quaglia, J. T. Arnason, and C. E. Morris. 1994. A putative nicotine pump at the metabolic blood-brain barrier of the tobacco hornworm. J. Neurobiol. 25:2334.
  • Palasis, M., T. A. Kuntzweiler, J. M. Argüello, and J. B. Lingrel. 1996. Ouabain interactions with the H5-H6 Hairpin of the Na,K-ATPase reveal a possible inhibition mechanism via the cation binding domain. J. Biol. Chem. 271:1417614182.
  • Petschenka, G., and S. Dobler. 2009. Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+K+-ATPase of the oleander hawk moth (Daphnis nerii) is highly susceptible to cardenolides. Chemoecology 19:235239.
  • Petschenka, G., J. K. Offe, and S. Dobler. 2012. Physiological screening for target site insensitivity and localization of Na+/K+-ATPase in cardenolide-adapted Lepidoptera. J. Insect Physiol. 58:607612.
  • Petschenka, G., C. Pick, V. Wagschal, and S. Dobler. 2013. Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk-moth species. Proc. R. Soc. B 280: 20123089. Available at http://dx.doi.org/10.1098/rspb.2012.3089.
  • Price, E. M., and J. B. Lingrel. 1988. Structure-function relationships in the Na,K-ATPase α subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry 27:84008408.
  • Price, E. M., D. A. Rice, and J. B. Lingrel. 1989. Site-directed mutagenesis of a conserved, extracellular aspartic acid residue affects the ouabain sensitivity of sheep Na,K-ATPase. J. Biol. Chem. 264:2190221906.
  • Price, E. M., D. A. Rice, and J. B. Lingrel. 1990. Structure-function studies of Na,K-ATPase. Site-directed mutagenesis of the border residues from the H1-H2 extracellular domain of the α subunit. J. Biol. Chem. 265:66386641.
  • Qiu, L. Y., E. Krieger, G. Schaftenaar, H. G. Swarts, P. H. Willems, J. J. De Pont, and J. B. Koenderink. 2005. Reconstruction of the complete ouabain-binding pocket of Na,K-ATPase in gastric H,K-ATPase by substitution of only seven amino acids. J. Biol. Chem. 280:3234932355.
  • Qiu, L. Y., H. G. P. Swarts, E. C. M. Tonk, P. H. G. M. Willems, J. B. Koenderink, and J. J. H. H. M. De Pont. 2006. Conversion of the low affinity ouabain-binding site of non-gastric H,K-ATPase into a high affinity binding site by substitution of only five amino acids. J. Biol. Chem. 281:1353313539.
  • Rothschild, M., J. V. Euw, T. Reichstein, D. A. S. Smith, and J. Pierre. 1975. Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus (L.). Proc. R. Soc. B 190:131.
  • Schindler, O., and T. Reichstein. 1954. Die Glykoside der Samen von Strophanthus caudatus (Burm. ex L.) Kurz. Glykoside und Aglykone, 122. Mitteilung. Helv. Chim. Acta 37:103112.
  • Schultheis, P. J., E. T. Wallick, and J. B. Lingrel. 1993. Kinetic analysis of ouabain binding to native and mutated forms of Na,K-ATPase and identification of a new region involved in cardiac glycoside interactions. J. Biol. Chem. 268:2268622694.
  • Scudder, G. G. E., and J. Meredith. 1982. The permeability of the midgut of three insects to cardiac glycosides. J. Insect Physiol. 28:689694.
  • Singer, M. S., and J. O. Stireman. 2005. The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol. Lett. 8:12471255.
  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:27312739.
  • Taussky, H. H., and E. Shorr. 1953. A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem. 202:675685.
  • Vane-Wright, R. I., and M. Boppré. 1990. The unknown male of Tiradelphe schneideri (Lepidoptera, Danainae)—missing piece in a butterfly puzzle. Trans. Lepid. Soc. Jap. 41:193199.
  • Vaughan, G. L., and A. M. Jungreis. 1977. Insensitivity of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides. J. Insect Physiol. 23:585589.
  • Yatime, L., M. Laursen, J. P. Morth, M. Esmann, P. Nissen, and N. U. Fedosova. 2011. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. J. Struct. Biol. 174:296306.
  • Zangerl, A. R., M. C. Stanley, and M. R. Berenbaum. 2008. Selection for chemical trait remixing in an invasive weed after reassociation with a coevolved specialist. Proc. Natl. Acad. Sci. USA 105:45474552.
  • Zhan, S., C. Merlin, J. L. Boore, and S. M. Reppert. 2011. The monarch butterfly genome yields insights into long-distance migration. Cell 147:11711185.
  • Zhen, Y., M. L. Aardema, E. M. Medina, M. Schumer, and P. Andolfatto. 2012. Parallel molecular evolution in an herbivore community. Science 337:16341637.