Get access

9-cis retinoic acid is the ALDH1A1 product that stimulates melanogenesis


Correspondence: Anand K. Ganesan, MD, PhD, Department of Biological Chemistry and Dermatology, University of California Irvine, 202 Sprague Hall, Irvine, CA 92697-2400, USA, Tel.: (949) 824-2926, Fax: (949) 824-7454, e-mail:


Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyses the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalysing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli's salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo.