• 1
    Winterburn PJ & Phelps CF (1972) The significance of glycosylated proteins. Nature 236, 147151.
  • 2
    Gabius H-J, ed. (2009) The Sugar Code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, Germany.
  • 3
    Gabius H-J, André S, Jiménez-Barbero J, Romero A & Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36, 298313.
  • 4
    Caselitz J (1987) Lectins and blood group substances as ‘tumor markers’. Curr Top Pathol 77, 245277.
  • 5
    Brockhausen I, Schutzbach J & Kuhns W (1998) Glycoproteins and their relationship to human disease. Acta Anat 161, 3678.
  • 6
    Dabelsteen E (1996) Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 179, 358369.
  • 7
    Gabius H-J (2011) Glycobiomarkers by glycoproteomics and glycan profiling (glycomics): emergence of functionality. Biochem Soc Trans 39, 399405.
  • 8
    Easton EW, Bolscher JGM & van den Eijnden DH (1991) Enzymatic amplification involving glycosyltransferases forms the basis for the increased size of asparagine-linked glycans at the surface of NIH 3T3 cells expressing the N-ras proto-oncogene. J Biol Chem 266, 2167421680.
  • 9
    Le Marer N, Laudet V, Svensson EC, Cazlaris H, van Hille B, Lagrou C, Stehelin D, Montreuil J, Verbert A & Delannoy P (1992) The c-Ha-ras oncogene induces increased expression of β-galactoside α2,6-sialyltransferase in rat fibroblast (FR3T3) cells. Glycobiology 2, 4956.
  • 10
    Seales EC, Jurado GA, Singhal A & Bellis SL (2003) Ras oncogene directs expression of a differentially sialylated, functionally altered β1-integrin. Oncogene 22, 71377145.
  • 11
    Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J & Gabius H-J (2009) Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology 19, 726734.
  • 12
    André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Böck C, Deguchi K, Detjen KM et al. (2007) Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 274, 32333256.
  • 13
    Dall'Olio F, Malagolini N, Di Stefano G, Ciambella M & Serafini-Cessi F (1991) α2,6-Sialylation of N-acetyllactosaminic sequences in human colorectal cancer cell lines. Relationship with non-adherent growth. Int J Cancer 47, 291297.
  • 14
    Zhu Y, Srivatana U, Ullah A, Gagneja H, Berenson CS & Lance P (2001) Suppression of a sialyltransferase by antisense DNA reduces invasiveness of human colon cancer cells in vitro. Biochim Biophys Acta 1536, 148160.
  • 15
    Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR & Bellis SL (2005) Hypersialylation of β1-integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65, 46454652.
  • 16
    Shaikh FM, Seales EC, Clem WC, Hennessy KM, Zhuo Y & Bellis SL (2008) Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Exp Cell Res 314, 29412950.
  • 17
    Zhao J, Patwa TH, Qiu W, Shedden K, Hinderer R, Misek DE, Anderson MA, Simeone DM & Lubman DM (2007) Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J Proteome Res 6, 18641874.
  • 18
    Qiu Y, Patwa TH, Xu L, Shedden K, Misek DE, Tuck M, Jin G, Ruffin MT, Turgeon DK, Synal S et al. (2008) Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res 7, 16931703.
  • 19
    Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ & Bellis SL (2002) Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. J Biol Chem 277, 3283032836.
  • 20
    Plath T, Detjen K, Welzel M, von Marschall Z, Murphy D, Schirner M, Wiedenmann B & Rosewicz S (2000) A novel function for the tumor suppressor p16INK4a: induction of anoikis via upregulation of the α5β1 fibronectin receptor. J Cell Biol 150, 14671478.
  • 21
    Kaltner H & Gabius H-J (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 27, 397416.
  • 22
    Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S & Gabius H-J (2010) Tumor suppressor p16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 277, 35523563.
  • 23
    Sparrow CP, Leffler H & Barondes SH (1987) Multiple soluble β-galactoside-binding lectins from human lung. J Biol Chem 262, 73837390.
  • 24
    Ahmad N, Gabius H-J, Kaltner H, André S, Kuwabara I, Liu F-T, Oscarson S, Norberg T & Brewer CF (2002) Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3 and -7: evidence for differential binding specificities. Can J Chem 80, 10961104.
  • 25
    Leppänen A, Stowell S, Blixt O & Cummings RD (2005) Dimeric galectin-1 binds with high affinity to α2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280, 55495562.
  • 26
    Earl LA, Bi S & Baum LG (2010) N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem 285, 22322244.
  • 27
    Amano M, Galvan M, He J & Baum LG (2003) The ST6Gal-I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem 278, 74697475.
  • 28
    Zhuo Y, Chammas R & Bellis SL (2008) Sialylation of β1-integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J Biol Chem 283, 2217722185.
  • 29
    Miura Y, Kato K, Takegawa Y, Kurogochi M, Furukawa J-i, Shinohara Y, Nagahori N, Amano M, Hinou H & Nishimura S-I (2010) Glycoblotting-assisted O-glycomics: ammonium carbamate allows for highly efficient O-glycan release from glycoproteins. Anal Chem 82, 1002110029.
  • 30
    Nishimura S-I (2011) Toward automated glycan analysis. Adv Carbohydr Chem Biochem 65, 219265.
  • 31
    Amano M, Hashimoto R & Nishimura S-I (2012) Effects of single genetic damage in carbohydrate-recognizing proteins in mouse serum N-glycan profile revealed by simple glycotyping analysis. ChemBioChem 13, 451464.
  • 32
    Eriksson H, Lengqvist J, Hedlund J, Uhlén K, Orre LM, Bjellqvist B, Persson B, Lehtiö J & Jakobsson P-J (2008) Quantitative membrane proteomics applying narrow-range peptide isoelectric focusing for studies of small cell lung cancer resistance mechanisms. Proteomics 8, 30083018.
  • 33
    van den Eijnden DH, Joziasse DH, Dorland L, van Halbeek H, Vliegenthart JFG & Schmid K (1980) Specificity in the enzymic transfer of sialic acid to the oligosaccharide branches of bi- and triantennary glycopeptides of α1-acid glycoprotein. Biochem Biophys Res Commun 92, 839845.
  • 34
    Joziasse DH, Schiphorst WECM, van den Eijnden DH, van Kuik JA, van Halbeek H & Vliegenthart JFG (1985) Branch specificity of bovine colostrum CMP-sialic acid: N-acetyllactosaminide α2,6-sialyltransferase. Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins. J Biol Chem 260, 714719.
  • 35
    Joziasse DH, Schiphorst WECM, van den Eijnden DH, van Kuik JA, van Halbeek H & Vliegenthart JFG (1987) Branch specificity of bovine colostrum CMP-sialic acid: Galβ1,4GlcNAc-R α2,6-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the N-acetyllactosamine type. J Biol Chem 262, 20252033.
  • 36
    Barb AW, Brady EK & Prestegard JH (2009) Branch-specific sialylation of IgG-Fc glycans by ST6Gal-I. Biochemistry 48, 97059707.
  • 37
    Nakagawa H, Zheng M, Hakomori S-i, Tsukamoto Y, Kawamura Y & Takahashi N (1996) Detailed oligosaccharide structures of human integrin α5β1 analyzed by a three-dimensional mapping technique. Eur J Biochem 237, 7685.
  • 38
    Patsos G & Corfield A (2009) O-glycosylation: structural diversity and functions. In The Sugar Code. Fundamentals of glycosciences (Gabius H-J, ed.), pp. 111137. Wiley-VCH, Weinheim, Germany.
  • 39
    Monica TJ, Andersen DC & Goochee CF (1997) A mathematical model of sialylation of N-linked oligosaccharides in the trans-Golgi network. Glycobiology 7, 515521.
  • 40
    Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VDP & Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19, 13821401.
  • 41
    Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W & Pawlita M (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 13721376.
  • 42
    Sanchez-Ruderisch H, Detjen KM, Welzel M, André S, Fischer C, Gabius H-J & Rosewicz S (2011) Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ 18, 806816.
  • 43
    Kikuchi K, Kikuchi H & Tsuiki S (1971) Activities of sialic acid-synthesizing enzymes in rat liver and rat and mouse tumors. Biochim Biophys Acta 252, 357368.
  • 44
    Harms E, Kreisel W, Morris HP & Reutter W (1973) Biosynthesis of N-acetylneuraminic acid in Morris hepatomas. Eur J Biochem 32, 254262.
  • 45
    Dall'Olio F, Chiricolo M, Ceccarelli C, Minni F, Marrano D & Santini D (2000) β-Galactoside α2,6-sialyltransferase in human colon cancer: contribution of multiple transcripts to regulation of enzyme activity and reactivity with Sambucus nigra agglutinin. Int J Cancer 88, 5865.
  • 46
    Marino JH, Hoffman M, Meyer M & Miller KS (2004) Sialyltransferase mRNA abundances in B cells are strictly controlled, correlated with cognate lectin binding, and differentially responsive to immune signaling in vitro. Glycobiology 14, 12651274.
  • 47
    Sasaki H, Bothner B, Dell A & Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262, 1205912076.
  • 48
    Schwarzkopf M, Knobeloch K-P, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W & Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99, 52675270.
  • 49
    Galeano B, Klootwijk R, Manoli I, Sun M, Ciccone C, Darvish D, Starost MF, Zerfas PM, Hoffmann VJ, Hoogstraten-Miller S et al. (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117, 15851594.
  • 50
    Malicdan MCV, Noguchi S, Hayashi YK, Nonaka I & Nishino I (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15, 690695.
  • 51
    Weidemann W, Klukas C, Klein A, Simm A, Schreiber F & Horstkorte R (2010) Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 20, 107117.
  • 52
    Kemmner W, Kessel P, Sanchez-Ruderisch H, Möller H, Hinderlich S, Schlag PM & Detjen K (2012) Loss of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) induces apoptotic processes in pancreatic carcinoma cells. FASEB J 26, 938946.
  • 53
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 11541169.
  • 54
    Choe L, D'Ascenzo M, Relkin NR, Pappin D, Ross P, Williamson B, Guertin S, Pribil P & Lee KH (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics 7, 36513660.
  • 55
    Lengqvist J, Eriksson H, Gry M, Uhlen K, Bjorklund C, Bjellqvist B, Jakobsson PJ & Lehtiö J (2011) Observed peptide pI and retention time shifts as a result of post-translational modifications in multidimensional separations using narrow-range IPG-IEF. Amino Acids 40, 697711.
  • 56
    Reinke SO & Hinderlich S (2007) Prediction of three different isoforms of the human UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. FEBS Lett 581, 33273331.
  • 57
    Yardeni T, Choekyi T, Jacobs K, Ciccone C, Patzel K, Anikster Y, Gahl WA, Kurochkina N & Huizing M (2011) Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 50, 89148925.
  • 58
    Watson DR, Jourdian GW & Roseman S (1966) The sialic acids. VIII. Sialic acid 9-phosphate synthetase. J Biol Chem 241, 56275636.
  • 59
    Chen H, Blume A, Zimmermann-Kordmann M, Reutter W & Hinderlich S (2002) Purification and characterization of N-acetylneuraminic acid-9-phosphate synthase from rat liver. Glycobiology 12, 6571.
  • 60
    Kornfeld S, Kornfeld R, Neufeld EF & O'Brien PJ (1964) The feedback control of sugar nucleotide biosynthesis in liver. Proc Natl Acad Sci USA 52, 371379.
  • 61
    Kikuchi K & Tsuiki S (1973) Purification and properties of UDP-N-acetylglucosamine 2′-epimerase from rat liver. Biochim Biophys Acta 327, 193206.
  • 62
    Hinderlich S, Stäsche R, Zeitler R & Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272, 2431324318.
  • 63
    Wasano K & Hirakawa Y (1997) Recombinant galectin-1 recognizes mucin and epithelial cell surface glycocalyces of gastrointestinal tract. J Histochem Cytochem 45, 275283.
  • 64
    Wu AM, Singh T, Liu J-H, Krzeminski M, Russwurm R, Siebert H-C, Bonvin AMJJ, André S & Gabius H-J (2007) Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. Glycobiology, 17, 165184.
  • 65
    Krzeminski M, Singh T, André S, Lensch M, Wu AM, Bonvin AMJJ & Gabius H-J (2011) Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochim Biophys Acta 1810, 150161.
  • 66
    Clément M, Rocher J, Loirand G & Le Pendu J (2004) Expression of sialyl-Tn epitopes on β1-integrin alters epithelial cell phenotype, proliferation and haptotaxis. J Cell Sci 117, 50595069.
  • 67
    Mo H, Winter HC & Goldstein IJ (2000) Purification and characterization of a Neu5Acα2,6-Galβ1,4-Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. J Biol Chem 275, 1062310629.
  • 68
    Zhang B, Palcic MM, Mo H, Goldstein IJ & Hindsgaul O (2001) Rapid determination of the binding affinity and specificity of the mushroom Polyporus squamosus lectin using frontal affinity chromatography coupled to electrospray mass spectrometry. Glycobiology 11, 141147.
  • 69
    Kadirvelraj R, Grant OC, Goldstein IJ, Winter HC, Tateno H, Fadda E & Woods RJ (2011) Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acα2,6-Galβ1,4-GlcNAc human-type influenza receptor. Glycobiology 21, 973984.
  • 70
    Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M & Gabius H-J (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276, 3591735923.
  • 71
    Wang J, Lu Z-H, Gabius H-J, Rohowsky-Kochan C, Ledeen RW & Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182, 40364045.
  • 72
    Ledeen RW, Wu G, André S, Bleich D, Huet G, Kaltner H, Kopitz J & Gabius H-J (2012) Beyond glycoproteins as galectin counterreceptors: tumor/effector T cell growth control via ganglioside GM1. Ann NY Acad Sci 1253, 206221.
  • 73
    Fischer C, Sanchez-Ruderisch H, Welzel M, Wiedenmann B, Sakai T, André S, Gabius H-J, Khachigian L, Detjen KM & Rosewicz S (2005) Galectin-1 interacts with the α5β1 fibronectin receptor to restrict carcinoma cell growth via induction of p21 and p27. J Biol Chem 280, 3726637277.
  • 74
    Rorive S, Belot N, Decaestecker C, Lefranc F, Gordower L, Micik S, Maurage C-A, Kaltner H, Ruchoux M-M, Danguy A et al. (2001) Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia 33, 241255.
  • 75
    Saussez S, Decaestecker C, Lorfevre F, Cucu D-R, Mortuaire G, Chevalier D, Wacreniez A, Kaltner H, André S, Toubeau G et al. (2007) High level of galectin-1 expression is a negative prognostic predictor of recurrence in laryngeal squamous cell carcinomas. Int J Oncol 30, 11091117.
  • 76
    Roda O, Ortiz-Zapater E, Martínez-Bosch N, Gutiérrez-Gallego R, Vila-Perelló M, Ampurdanés C, Gabius H-J, André S, Andreu D, Real FX et al. (2009) Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology 136, 13791390.
  • 77
    Yamamoto H, Kaneko Y, Vandermulen D, Kersey D, Mkrdichian E, Cerullo L, Leestma J & Moskal JR (1995) The expression of CMP-NeuAc: Galβ1,4GlcNAc α2,6 sialyltransferase [EC] and glycoproteins bearing α2,6-linked sialic acids in human brain tumours. Glycoconj J 12, 848856.
  • 78
    Kaneko Y, Yamamoto H, Kersey DS, Colley KJ, Leestma JE & Moskal JR (1996) The expression of Galβ1,4GlcNAc α2,6-sialyltransferase and α2,6-linked sialoglycoconjugates in human brain tumors. Acta Neuropathol 91, 284292.
  • 79
    Yamamoto H, Kaneko Y, Rebbaa A, Bremer EG & Moskal JR (1997) α2,6-Sialyltransferase gene transfection into a human glioma cell line (U373 MG) results in decreased invasivity. J Neurochem 68, 25662576.
  • 80
    Yamamoto H, Oviedo A, Sweeley C, Saito T & Moskal JR (2001) α2,6-Sialylation of cell-surface N-glycans inhibits glioma formation in vivo. Cancer Res 61, 68226829.
  • 81
    Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M & Huang C-L (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 105, 98059810.
  • 82
    Huang C-L & Moe OW (2011) Klotho: a novel regulator of calcium and phosphorus homeostasis. Pflügers Arch 462, 185193.
  • 83
    Valenzuela HF, Pace KE, Cabrera PV, White R, Porvari K, Kaija H, Vihko P & Baum G (2007) O-Glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res 67, 61556162.
  • 84
    Wang Z, Sun Z, Li AV & Yarema KJ (2006) Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. J Biol Chem 281, 2701627028.
  • 85
    Wang X, Sun P, Al-Qamari A, Tai T, Kawashima I & Paller AS (2001) Carbohydrate-carbohydrate binding of ganglioside to integrin α5 modulates α5β1 function. J Biol Chem 276, 84368444.
  • 86
    Wu G, Lu Z-H, Gabius H-J, Ledeen RW & Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes 60, 23412349.
  • 87
    Kopitz J (2009) Glycolipids. In The Sugar Code. Fundamentals of glycosciences (Gabius H-J, ed.), pp. 177198. Wiley-VCH, Weinheim, Germany.
  • 88
    Ledeen RW & Wu G (2009) Neurobiology meets glycosciences. In The Sugar Code. Fundamentals of glycosciences (Gabius H-J, ed.), pp. 495516. Wiley-VCH, Weinheim, Germany.
  • 89
    Kontou M, Bauer C, Reutter W & Horstkorte R (2008) Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells. Glycoconj J 25, 237244.
  • 90
    Camby I, Decaestecker C, Lefranc F, Kaltner H, Gabius H-J & Kiss R (2005) Galectin-1 knocking down in human U87 glioblastoma cells alters their gene expression pattern. Biochem Biophys Res Commun 335, 2735.
  • 91
    Puchades M, Nilsson C, Emmett MR, Aldape KD, Ji Y, Lang FF, Liu T-J & Conrad CA (2007) Proteomic investigation of glioblastoma cell lines treated with wild-type p53 and cytotoxic chemotherapy demonstrates an association between galectin-1 and p53 expression. J Proteome Res 6, 869875.
  • 92
    Polyak K, Xia Y, Zweier JL, Kinzler KW & Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389, 300305.
  • 93
    Kuwabara I, Kuwabara Y, Yang R-Y, Schuler M, Green DR, Zuraw BL, Hsu DK & Liu F-T (2002) Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem 277, 34873497.
  • 94
    Kübler D, Hung CW, Dam TK, Kopitz J, André S, Kaltner H, Lohr M, Manning JC, He L, Wang H et al. (2008) Phosphorylated human galectin-3: facile large-scale preparation of active lectin and detection of structural changes by CD spectroscopy. Biochim Biophys Acta 1780, 716722.
  • 95
    André S, Kozár T, Schuberth R, Unverzagt C, Kojima S & Gabius H-J (2007) Substitutions in the N-glycan core as regulators of biorecognition: the case of core-fucose and bisecting GlcNAc moieties. Biochemistry 46, 69846995.
  • 96
    Kaltner H, Solís D, André S, Lensch M, Manning JC, Mürnseer M, Sáiz JL & Gabius H-J (2009) Unique chicken tandem-repeat-type galectin: implications of alternative splicing and a distinct expression profile compared to those of the three proto-type proteins. Biochemistry 48, 44034416.
  • 97
    Kaltner H, Kübler D, López-Merino L, Lohr M, Manning JC, Lensch M, Seidler J, Lehmann WD, André S, Solís D et al. (2011) Toward comprehensive analysis of the galectin network in chicken: unique diversity of galectin-3 and comparison of its localization profile in organs of adult animals to the other four members of this lectin family. Anat Rec 294, 427444.
  • 98
    Stäsche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P & Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272, 2431924324.
  • 99
    Gabius H-J, van de Wouwer M, André S & Villalobo A (2012) Down-regulation of the epidermal growth factor receptor by altering N-glycosylation: emerging role of β1,4-galactosyltransferases. Anticancer Res 32, 15651572.
  • 100
    Amano M, Yamaguchi M, Takegawa Y, Yamashita T, Terashima M, Furukawa J, Miura Y, Shinohara Y, Iwasaki N, Minami A et al. (2010) Threshold instage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol Cell Proteomics 9, 523537.
  • 101
    Nishimura S-I, Niikura K, Kurogochi M, Matsushita T, Fumoto M, Hinou H, Kamitani R, Nakagawa H, Deguchi K, Miura N et al. (2005) High-throughput protein glycomics: combined use of chemoselective glycoblotting and MALDI-TOF/TOF mass spectrometry. Angew Chem Int Ed 44, 9196.
  • 102
    Wiśniewski JR, Zougman A, Nagaraj N & Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6, 359362.