• 1
    StuermerR, HauerB, HallM & FaberK (2007) Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol11, 203213.
  • 2
    ToogoodHS, GardinerJM & ScruttonNS (2010) Biocatalytic reductions and chemical versatility of the Old Yellow Enzyme family of flavoprotein oxidoreductases. ChemCatChem2, 892914.
  • 3
    Chaparro-RiggersJF, RogersTA, Vazquez-FigueroaE, PolizziKM & BommariusAS (2007) Comparison of three enoate reductases and their potential use for biotransformations. Adv Synth Catal349, 15211531.
  • 4
    HallM, StuecklerC, EhammerH, PointnerE, OberdorferG, GruberK, HauerB, StuermerR, KroutilW, MacherouxP, et al. (2008) Asymmetric bioreduction of C=C bonds using enoate reductases OPR1, OPR3 and YqjM: enzyme-based stereocontrol. Adv Synth Catal350, 411418.
  • 5
    HallM, StuecklerC, HauerB, StuermerR, FriedrichT, BreuerM, KroutilW & FaberK (2008) Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and Old Yellow Enzymes OYE 1–3 from yeasts. Eur J Org Chem151, 11516.
  • 6
    HallM, StuecklerC, HauerB, StuermerR, KroutilW, MacherouxP & FaberK (2007) Asymmetric bioreduction of activated alkenes using enoate reductases: control of stereochemistry. In Biotrans – 8th International Symposium on Biocatalysis and Biotransformations. Oviedo, Spain.
  • 7
    StuecklerC, HallM, EhammerH, PointnerE, KroutilW, MacherouxP & FaberK (2007) Stereocomplementary bioreduction of alpha,beta-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol. Org Lett9, 54095411.
  • 8
    SwiderskaMA & StewartJD (2006) Stereoselective enone reductions by Saccharomyces carlsbergensis old yellow enzyme. J Mol Catal B Enzym42, 5254.
  • 9
    KohliRM & MasseyV (1998) The oxidative half-reaction of Old Yellow Enzyme. The role of tyrosine 196. J Biol Chem273, 3276332770.
  • 10
    MasseyV & SchopferL (1986) Reactivity of old yellow enzyme with alpha-NADPH and other pyridine nucleotide derivatives. J Biol Chem261, 12151222.
  • 11
    FrenchCE, NicklinS & BruceNC (1996) Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol178, 66236627.
  • 12
    KhanH, HarrisRJ, BarnaT, CraigDH, BruceNC, MunroAW, MoodyPC & ScruttonNS (2002) Kinetic and structural basis of reactivity of pentaerythritol tetranitrate reductase with NADPH, 2-cyclohexenone, nitroesters, and nitroaromatic explosives. J Biol Chem277, 2190621912.
  • 13
    WilliamsRE, RathboneDA, ScruttonNS & BruceNC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol70, 35663574.
  • 14
    FryszkowskaA, ToogoodHS, SakumaM, GardinerJM, StephensGM & ScruttonNS (2009) Asymmetric reduction of activated alkenes by pentaerythritol tetranitrate reductase: specificity and control of stereochemical outcome by reaction optimisation. Adv Synth Catal351, 29762990.
  • 15
    KhanH, BarnaT, BruceNC, MunroAW, LeysD & ScruttonNS (2005) Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme–progesterone complex and the roles of residues Tyr186, His181, His184. FEBS J272, 46604671.
  • 16
    ToogoodHS, FryszkowskaA, HareV, FisherK, RoujeinikovaA, LeysD, GardinerJM, StephensGM & ScruttonNS (2008) Structure-based insight into the asymmetric bioreduction of the C=C double bond of alpha,beta-unsaturated nitroalkenes by pentaerythritol tetranitrate reductase. Adv Synth Catal350, 27892803.
  • 17
    WilliamsRE & BruceNC (2002) ‘New uses for an old enzyme’ – the Old Yellow Enzyme family of flavoenzymes. Microbiology148, 16071614.
  • 18
    SchoemakerHE, MinkD & WubboltsMG (2003) Dispelling the myths – biocatalysis in industrial synthesis. Science299, 16941697.
  • 19
    FryszkowskaA, FisherK, GardinerJM & StephensGM (2008) Highly enantioselective reduction of b,b-disubstituted aromatic nitroalkenes catalyzed by Clostridium sporogenes. J Org Chem73, 42954298.
  • 20
    FryszkowskaA, ToogoodH, SakumaM, StephensGM, GardinerJM & ScruttonNS (2011) Active site modifications in pentaerythritol tetranitrate reductase can lead to improved product enantiopurity, decreased by-product formation and altered stereochemical outcome in reactions with α,β-unsaturated nitroolefins. Catal Sci Technol1, 948957.
  • 21
    MuellerNJ, StuecklerC, HauerB, BaudendistelN, HousdenH, BruceNC & FaberK (2010) The substrate spectra of pentaerythritol tetranitrate reductase, morphinone reductase, N-ethylmaleimide reductase and estrogen-binding protein in the asymmetric bioreduction or activated alkenes. Adv Synth Catal352, 387394.
  • 22
    HulleyME, ToogoodHS, FryszkowskaA, MansellD, StephensGM, GardinerJM & ScruttonNS (2010) Directed evolution of pentaerythritol tetranitrate reductase using automated anaerobic kinetic screening of site-saturated libraries. ChemBioChem11, 24332447.
  • 23
    ToogoodHS, FryszkowskaA, HulleyM, SakumaM, MansellD, StephensGM, GardinerJM & ScruttonNS (2011) A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. ChemBioChem12, 738749.
  • 24
    DurchscheinK, Ferreira-da SilvaB, WallnerS, MacherouxP, KroutilW, GlueckSM & FaberK (2010) The flavoprotein-catalyzed reduction of aliphatic nitro-compounds represents a biocatalytic equivalent to the Nef-reaction. Green Chem12, 616619.
  • 25
    BrownBJ, HyunJW, DuvvuriS, KarplusPA & MasseyV (2002) The role of glutamine 114 in Old Yellow Enzyme. J Biol Chem277, 21382145.
  • 26
    MasseyV (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem269, 2245922462.
  • 27
    HerzogV & FahimiD (1973) A new sensitive colorimetric assay for peroxidase using 3,3′-diaminobenzidine as hydrogen donor. Anal Biochem55, 554562.
  • 28
    MalmstromBG (1982) Enzymology of oxygen. Annu Rev Biochem51, 2159.
  • 29
    BarnaTM, KhanH, BruceNC, BarsukovI, ScruttonNS & MoodyPC (2001) Crystal structure of pentaerythritol tetranitrate reductase: ‘flipped’ binding geometries for steroid substrates in different redox states of the enzyme. J Mol Biol310, 433447.
  • 30
    ShermanF, StewartJW & TsunasawaS (1985) Methionine or not methionine at the beginning of a protein. BioEssays3, 2731.
  • 31
    ReddieKG & CarrolKS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol12, 746754.
  • 32
    SchoneichC (2005) Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim Biophys Acta1703, 111119.
  • 33
    Jose Perez-LlarenaF, KerffF, AbianO, MalloS, Carmen FernandezM, GalleniM, SanchoJ & BouG (2011) Distant and new mutations in CTX-M-1 beta-lactamase affect cefotaxime hydrolysis. Antimicrob Agents Chemother55, 43614368.
  • 34
    GuanC, KumarS, KuceraR & EwelA (2004) Changing the enzymatic activity of T7 endonuclease by mutations at the beta-bridge site: alteration of substrate specificity profile and metal ion requirements by mutation distant from the catalytic domain. Biochemistry43, 43134322.
  • 35
    MorleyK & KazlauskasR (2005) Improving enzyme properties: when are closer mutations better?Trends Biotechnol23, 231237.
  • 36
    YamanoT, KurodaK, FujiiS & MiuraR (1993) Characterization of the electron acceptors of old yellow enzyme: mechanistic approach to the mode of one electron transfer from the enzyme to menadione or dyestuffs. J Biochem114, 879884.