SEARCH

SEARCH BY CITATION

References

  • 1
    Page MJ & Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65, 12201236.
  • 2
    Otlewski J, Krowarsch D & Apostoluk W (1999) Protein inhibitors of serine proteinases. Acta Biochim Pol 46, 531565.
  • 3
    Rawlings ND, Barrett AJ & Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40, D343D350.
  • 4
    Schweitz H, Vincent JP & Lazdunski M (1973) Trypsin–pancreatic secretory inhibitor (Kazal inhibitor) interaction. Kinetic and thermodynamic properties. Biochemistry 12, 28412846.
  • 5
    Bode W, Epp O, Huber R, Laskowski M Jr & Ardelt W (1985) The crystal and molecular structure of the third domain of silver pheasant ovomucoid (OMSVP3). Eur J Biochem 147, 387395.
  • 6
    Fujinaga M, Sielecki AR, Read RJ, Ardelt W, Laskowski M Jr & James MN (1987) Crystal and molecular structures of the complex of α-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 Å resolution. J Mol Biol 195, 397418.
  • 7
    Schechter I & Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27, 157162.
  • 8
    Tamaoki H, Miura R, Kusunoki M, Kyogoku Y, Kobayashi Y & Moroder L (1998) Folding motifs induced and stabilized by distinct cystine frameworks. Protein Eng 11, 649659.
  • 9
    Hemmi H, Kumazaki T, Yoshizawa-Kumagaye K, Nishiuchi Y, Yoshida T, Ohkubo T & Kobayashi Y (2005) Structural and functional study of an Anemonia elastase inhibitor, a ‘nonclassical’ Kazal-type inhibitor from Anemonia sulcata. Biochemistry 44, 96269636.
  • 10
    Hemmi H, Yoshida T, Kumazaki T, Nemoto N, Hasegawa J, Nishioka F, Kyogoku Y, Yokosawa H & Kobayashi Y (2002) Solution structure of ascidian trypsin inhibitor determined by nuclear magnetic resonance spectroscopy. Biochemistry 41, 1065710664.
  • 11
    Brillard-Bourdet M, Hamdaoui A, Hajjar E, Boudier C, Reuter N, Ehret-Sabatier L, Bieth JG & Gauthier F (2006) A novel locust (Schistocerca gregaria) serine protease inhibitor with a high affinity for neutrophil elastase. Biochem J 400, 467476.
  • 12
    Roussel A & Cambillau C (1991) Turbo-Frodo. In Silicon Graphics Geometry Partners Directory. Silicon Graphics, Mountain View, CA. p. 86.
  • 13
    Murshudov GN, Vagin AA & Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240255.
  • 14
    Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, Roversi P, Sharff A, Smart OS, Vonrhein C et al. (2011) BUSTER Version 2.11.2. Global Phasing Ltd, Cambridge, UK.
  • 15
    Horn JR, Ramaswamy S & Murphy KP (2003) Structure and energetics of protein–protein interactions: the role of conformational heterogeneity in OMTKY3 binding to serine proteases. J Mol Biol 331, 497508.
  • 16
    Shenoy RT, Thangamani S, Velazquez-Campoy A, Ho B, Ding JL & Sivaraman J (2011) Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin. PLoS One 6, e18838.
  • 17
    Fujinaga M, Chernaia MM, Halenbeck R, Koths K & James MN (1996) The crystal structure of PR3, a neutrophil serine proteinase antigen of Wegener's granulomatosis antibodies. J Mol Biol 261, 267278.
  • 18
    Holm L & Sander C (1991) Database algorithm for generating protein backbone and side-chain co-ordinates from a Cα trace application to model building and detection of co-ordinate errors. J Mol Biol 218, 183194.
  • 19
    Harrington AE, Morris-Triggs SA, Ruotolo BT, Robinson CV, Ohnuma S & Hyvonen M (2006) Structural basis for the inhibition of activin signalling by follistatin. EMBO J 25, 10351045.
  • 20
    van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, Kroger B, Hoffken W & Bode W (1995) Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14, 51495157.
  • 21
    Hecht HJ, Szardenings M, Collins J & Schomburg D (1991) Three-dimensional structure of the complexes between bovine chymotrypsinogen A and two recombinant variants of human pancreatic secretory trypsin inhibitor (Kazal-type). J Mol Biol 220, 711722.
  • 22
    Schlott B, Wohnert J, Icke C, Hartmann M, Ramachandran R, Guhrs KH, Glusa E, Flemming J, Gorlach M, Grosse F et al. (2002) Interaction of Kazal-type inhibitor domains with serine proteinases: biochemical and structural studies. J Mol Biol 318, 533546.
  • 23
    Maynes JT, Cherney MM, Qasim MA, Laskowski M Jr & James MN (2005) Structure of the subtilisin Carlsberg–OMTKY3 complex reveals two different ovomucoid conformations. Acta Crystallogr D Biol Crystallogr 61, 580588.
  • 24
    Campos IT, Souza TA, Torquato RJ, De Marco R, Tanaka-Azevedo AM, Tanaka AS & Barbosa JA (2012) The Kazal-type inhibitors infestins 1 and 4 differ in specificity but are similar in three-dimensional structure. Acta Crystallogr D Biol Crystallogr 68, 695702.
  • 25
    Liepinsh E, Berndt KD, Sillard R, Mutt V & Otting G (1994) Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy. J Mol Biol 239, 137153.
  • 26
    Horita S, Ishibashi J, Nagata K, Miyakawa T, Yamakawa M & Tanokura M (2010) Isolation, cDNA cloning, and structure-based functional characterization of oryctin, a hemolymph protein from the coconut rhinoceros beetle, Oryctes rhinoceros, as a novel serine protease inhibitor. J Biol Chem 285, 3015030158.
  • 27
    Swint L & Robertson AD (1993) Thermodynamics of unfolding for turkey ovomucoid third domain: thermal and chemical denaturation. Protein Sci 2, 20372049.
  • 28
    Vogt G, Woell S & Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269, 631643.
  • 29
    Matsumura M, Signor G & Matthews BW (1989) Substantial increase of protein stability by multiple disulphide bonds. Nature 342, 291293.
  • 30
    Thompson MJ & Eisenberg D (1999) Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 290, 595604.
  • 31
    Bigler TL, Lu W, Park SJ, Tashiro M, Wieczorek M, Wynn R & Laskowski M Jr (1993) Binding of amino acid side chains to preformed cavities: interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P1 residues. Protein Sci 2, 786799.
  • 32
    Roussel A, Mathieu M, Dobbs A, Luu B, Cambillau C & Kellenberger C (2001) Complexation of two proteic insect inhibitors to the active site of chymotrypsin suggests decoupled roles for binding and selectivity. J Biol Chem 276, 3889338898.
  • 33
    Kellenberger C, Ferrat G, Leone P, Darbon H & Roussel A (2003) Selective inhibition of trypsins by insect peptides: role of P6–P10 loop. Biochemistry 42, 1360513612.
  • 34
    Kellenberger C, Leone P, Coquet L, Jouenne T, Reichhart JM & Roussel A (2011) Structure–function analysis of grass clip serine protease involved in Drosophila Toll pathway activation. J Biol Chem 286, 1230012307.
  • 35
    Rezaie AR & Yang L (2005) Deletion of the 60-loop provides new insights into the substrate and inhibitor specificity of thrombin. Thromb Haemost 93, 10471054.
  • 36
    Bode W, Turk D & Karshikov A (1992) The refined 1.9-Å X-ray crystal structure of d-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure–function relationships. Protein Sci 1, 426471.
  • 37
    Yang L, Manithody C & Rezaie AR (2007) The role of autolysis loop in determining the specificity of coagulation proteases. Braz J Med Biol Res 40, 10551064.
  • 38
    Korkmaz B, Attucci S, Juliano MA, Kalupov T, Jourdan ML, Juliano L & Gauthier F (2008) Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates. Nat Protoc 3, 9911000.
  • 39
    Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66, 125132.
  • 40
    Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62, 7282.
  • 41
    Navaza J (2001) Implementation of molecular replacement in AMoRe. Acta Crystallogr D Biol Crystallogr 57, 13671372.
  • 42
    Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS & Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 1221.