• 1
    Cao L, Bala G, Caldeira K, Nemani R & Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci USA 107, 95139518.
  • 2
    Idso SB (1989) Carbon Dioxide and Global Change: Earth in Transition. IBR Press, Tempe, AZ (631 E. Laguna Dr., Tempe 85282).
  • 3
    Koerner C & Bazzaz FA (1996) Carbon Dioxide, Populations, and Communities. Academic Press, San Diego.
  • 4
    on Ossowski I, Stahlberg J, Koivula A, Piens K, Becker D, Boer H, Harle R, Harris M, Divne C, Mahdi S et al. (2003) Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Ce17A. A comparison with Phanerochaete chrysosporium Cel7D. J Mol Biol 333, 817829.
  • 5
    Gao JM, Weng HB, Zhu DH, Yuan MX, Guan FX & Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99, 76237629.
  • 6
    Zhou J, Wang YH, Chu J, Zhuang YP, Zhang SL & Yin P (2008) Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100–14. Bioresour Technol 99, 68266833.
  • 7
    Ahamed A & Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40, 399407.
  • 8
    Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT & Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes. J Mol Biol 272, 383397.
  • 9
    Coutinho PM & Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering (Gilbert HJ, Davies GJ, Henrissat B & Svensson B, eds), pp. 312. The Royal Society of Chemistry, Cambridge, UK.
  • 10
    Davies GJ, Wilson KS & Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321, 557559.
  • 11
    Lynd LR, Weimer PJ, van Zyl WH & Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology (vol 66, pg 506, 2002). Microbiol Mol Biol Rev 66, 739739.
  • 12
    Fagerstam LG & Pettersson LG (1980) The 1.4-beta-glucan cellobiohydrolases of Trichoderma reesei Qm-9414 – a new type of cellulolytic synergism. FEBS Lett 119, 97100.
  • 13
    Nummi M, Niku-Paavola ML, Lappalainen A, Enari TM & Raunio V (1983) Cellobiohydrolase from Trichoderma reesei. Biochem J 215, 677683.
  • 14
    Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J & Claeyssens M (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14, 713724.
  • 15
    Tomme P, Vantilbeurgh H, Pettersson G, Vandamme J, Vandekerckhove J, Knowles J, Teeri T & Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 170, 575581.
  • 16
    Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H & Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256, 119127.
  • 17
    Medve J, Lee D & Tjerneld F (1998) Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I. II and endoglucanase II by fast protein liquid chromatography. J Chromatogr A 808, 153165.
  • 18
    Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I & Knowles J (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase I. Gene 51, 4352.
  • 19
    Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Teeri TT & Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265, 524528.
  • 20
    Munoz IG, Ubhayasekera W, Henriksson H, Szabo I, Pettersson G, Johansson G, Mowbray SL & Stahlberg J (2001) Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 A resolution and homology models of the isozymes. J Mol Biol 314, 10971111.
  • 21
    Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM & Tuohy MG (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271, 4495450622.
  • 22
    Parkkinen T, Koivula A & Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17, 13831394.
  • 23
    Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J & Gronenborn AM (1989) Determination of the 3-dimensional solution structure of the C-terminal domain of cellobiohydrolase-I from Trichoderma reesei – a study using nuclear magnetic-resonance and hybrid distance geometry dynamical simulated annealing. Biochemistry 28, 72417257.
  • 24
    Divne C, Stahlberg J, Teeri TT & Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275, 309325.
  • 25
    Barr BK, Hsieh YL, Ganem B & Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35, 586592.
  • 26
    Stahlberg J, Divne C, Koivula A, Piens K, Claeyssens M, Teeri TT & Jones TA (1996) Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 264, 337349.
  • 27
    Castro AM, Pedro KC, Cruz JC, Ferreira MC, Leite SG & Pereira N Jr (2010) Trichoderma harzianum IOC-4038: a promising strain for the production of a cellulolytic complex with significant beta-glucosidase activity from sugarcane bagasse cellulignin. Appl Biochem Biotechnol 162, 21112122.
  • 28
    Claeyssens M, Van Tilbeurgh H, Tomme P, Wood TM & McRae SI (1989) Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem J 261, 819825.
  • 29
    Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanpera J & Koivula A (2008) Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 101, 515528.
  • 30
    Deshpande MV, Eriksson K-E & Gran Pettersson L (1984) An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138, 481487.
  • 31
    Vonhoff S, Piens K, Pipelier M, Braet C, Claeyssens M & Vasella A (1999) Inhibition of cellobiohydrolases from Trichoderma reesei. Synthesis and evaluation of some glucose-, cellobiose-, and cellotriose-derived hydroximolactams and imidazoles. Helv Chim Acta 82, 963980.
  • 32
    Jager G, Wu Z, Garschhammer K, Engel P, Klement T, Rinaldi R, Spiess AC & Buchs J (2010) Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics. Biotechnol Biofuels 3, 318.
  • 33
    Zhang YHP, Himmel ME & Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24, 452481.
  • 34
    Bragatto J, Segato F, Cota J, Mello DB, Oliveira MM, Buckeridge MS, Squina FM & Driemeier C (2012) Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses. J Phys Chem B 116, 61286136.
  • 35
    Esteghlalian AR, Bilodeau M, Mansfield SD & Saddler JN (2001) Do enzymatic hydrolyzability and simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Prog 17, 10491054.
  • 36
    Arantes V & Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3, 4.
  • 37
    Arantes V & Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4, 3.
  • 38
    Jalak J & Vaeljamaee P (2010) Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 106, 871883.
  • 39
    Jalak J, Kurašin M, Teugjas H & Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287, 2880228815.
  • 40
    Atalla RH & VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223, 283285.
  • 41
    Wiley JH & Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160, 113129.
  • 42
    Hayashi N, Sugiyama J, Okano T & Ishihara M (1998) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydr Res 305, 261269.
  • 43
    Qing Q, Yang B & Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101, 96249630.
  • 44
    Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A, Okunev O, Gusakov A, Maximenko V, Gregg D et al. (2005) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme Microb Technol 37, 175184.
  • 45
    Varnai A, Siika-aho M & Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46, 185193.
  • 46
    Irwin DC, Spezio M, Walker LP & Wilson DB (1993) Activity studies of 8 purified cellulases – specificity, synergism, and binding domain effects. Biotechnol Bioeng 42, 10021013.
  • 47
    Penttila ME, Andre L, Lehtovaara P, Bailey MJ, Teeri TT & Knowles JKC (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63, 103112.
  • 48
    Kurasin M & Valjamae P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286, 169177.
  • 49
    Colussi F, Serpa V, Delabona PS, Manzine LR, Voltatodio ML, Alves R, Mello BL, Pereira N, Farinas CS, Golubev AM et al. (2011) Purification, and biochemical and biophysical characterization of cellobiohydrolase I from Trichoderma harzianum IOC 3844. J Microbiol Biotechnol 21, 808817.
  • 50
    Valjamae P, Sild V, Nutt A, Pettersson G & Johansson G (1999) Acid hydrolosis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266, 327334.
  • 51
    Park S, Johnson DK, Ishizawa CI, Parilla PA & Davis MF (2009) Measuring the crystallinity index of cellulose by solid state C-13 nuclear magnetic resonance. Cellulose 16, 641647.
  • 52
    Guimaraes BG, Sanfelici L, Neuenschwander RT, Rodrigues F, Grizolli WC, Raulik MA, Piton JR, Meyer BC, Nascimento AS & Polikarpov I (2009) The MX2 macromolecular crystallography beamline: a wiggler X-ray source at the LNLS. J Synchrotron Radiat 16, 6975.
  • 53
    Colussi F, Textor LC, Serpa V, Maeda RN, Pereira N & Polikarpov I (2010) Purification, crystallization and preliminary crystallographic analysis of the catalytic domain of the extracellular cellulase CBHI from Trichoderma harzianum. Acta Crystallogr Sect F Struct Biol Cryst Commun 66, 10411044.
  • 54
    Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr Pt A 276, 307326.
  • 55
    Storoni LC, McCoy AJ & Read RJ (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr 60, 432438.
  • 56
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 21262132.
  • 57
    Skubak P, Murshudov GN & Pannu NS (2004) Direct incorporation of experimental phase information in model refinement. Acta Crystallogr D Biol Crystallogr 60, 21962201.
  • 58
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213221.
  • 59
    Perrakis A, Harkiolaki M, Wilson KS & Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D Biol Crystallogr 57, 14451450.
  • 60
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS et al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35, W375W383.
  • 61
    Gordon JC, Myers JB, Folta T, Shoja V, Heath LS & Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33, W368W371.
  • 62
    Myers J, Grothaus G, Narayanan S & Onufriev A (2006) A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins 63, 928938.
  • 63
    Martinez L, Andrade R, Birgin EG & Martinez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30, 21572164.
  • 64
    MacKerell AD, Bashford DM, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102, 35863616.
  • 65
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW & Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926935.
  • 66
    Darden T, York D & Pedersen L (1993) Particle mesh Ewald: an N. log(N) method for Ewald sums in large systems. J Chem Phys 98, 1008910092.
  • 67
    Ryckaert JP, Ciccotti G & Berendsen HJC (1997) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Chem 23, 327341.
  • 68
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L & Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26, 17811802.