HAX-1 is a nucleocytoplasmic shuttling protein with a possible role in mRNA processing



E. Grzybowska, Molecular Biology Department, Cancer Center Institute, Roentgena 5, 02-781 Warsaw, Poland

Fax: +48 22 546 31 91

Tel: +48 22 546 23 68

E-mail: ewag@coi.waw.pl


HAX-1 is a multi-functional protein that is involved in the regulation of apoptosis, cell motility and calcium homeostasis. It is also reported to bind RNA: it associates with structural motifs present in the 3′ untranslated regions of at least two transcripts, but the functional significance of this binding remains unknown. Although HAX-1 has been detected in various cellular compartments, it is predominantly cytoplasmic. Our detailed localization studies of HAX-1 isoforms revealed partial nuclear localization, the extent of which depends on the protein isoform. Further studies demonstrated that HAX-1 is in fact a nucleocytoplasmic shuttling protein, dependent on the exportin 1 nuclear export receptor. Systematic mutagenesis allowed identification of the two nuclear export signals in the HAX-1 sequence. HAX-1 nuclear accumulation was observed after inhibition of nuclear export by leptomycin B, but also after specific cellular stress. The biological role of HAX-1 nuclear localization and shuttling remains to be established, but the HAX-1 transcript-binding properties suggest that it may be connected to mRNA processing and surveillance. In this study, HAX-1 status was shown to influence mRNA levels of DNA polymerase β, one of the HAX-1 mRNA targets, although this effect becomes pronounced only after specific stress is applied. Moreover, HAX-1 tethering to the reporter transcript caused a significant decrease in its expression. Additionally, the HAX-1 co-localization with P-body markers, reported here, implies a role in mRNA processing. These results suggest that HAX-1 may be involved in the regulation of expression of bound transcripts, possibly as part of the stress response.

Structured digital abstract