SEARCH

SEARCH BY CITATION

References

  • 1
    Hinton SD, Myers MP, Roggero VR, Allison LA & Tonks NK (2010) The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. Biochem J 427, 349357.
  • 2
    Boudeau J, Miranda-Saavedra D, Barton GJ & Alessi DR (2006) Emerging roles of pseudokinases. Trends Cell Biol 16, 443452.
  • 3
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7, 833846.
  • 4
    Wishart MJ, Denu JM, Williams JA & Dixon JE (1995) A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem 270, 2678226785.
  • 5
    Wishart MJ & Dixon JE (1998) Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci 23, 301306.
  • 6
    Flint AJ, Tiganis T, Barford D & Tonks NK (1997) Development of ‘substrate-trapping’ mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 94, 16801685.
  • 7
    Tonks NK (2009) Pseudophosphatases: grab and hold on. Cell 139, 464465.
  • 8
    Blanchetot C, Chagnon M, Dube N, Halle M & Tremblay ML (2005) Substrate-trapping techniques in the identification of cellular PTP targets. Methods 35, 4453.
  • 9
    van der Wijk T, Blanchetot C & den Hertog J (2005) Regulation of receptor protein-tyrosine phosphatase dimerization. Methods 35, 7379.
  • 10
    Wishart MJ & Dixon JE (2002) The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production. Proc Natl Acad Sci USA 99, 21122117.
  • 11
    Conner SH, Kular G, Peggie M, Shepherd S, Schuttelkopf AW, Cohen P & Van Aalten DM (2006) TAK1-binding protein 1 is a pseudophosphatase. Biochem J 399, 427434.
  • 12
    Cheng KC, Klancer R, Singson A & Seydoux G (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139, 560572.
  • 13
    Robinson FL & Dixon JE (2005) The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B Charcot–Marie–Tooth disease. J Biol Chem 280, 3169931707.
  • 14
    Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammadouche T, Chkili T et al. (2003) Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot–Marie–Tooth disease associated with early-onset glaucoma. Am J Hum Genet 72, 11411153.
  • 15
    Parry JM, Velarde NV, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD et al. (2009) EGG-4 and EGG-5 link events of the oocyte-to-embryo transition with meiotic progression in C. elegans. Curr Biol 19, 17521757.
  • 16
    Fischer EH, Tonks NK, Charbonneau H, Cicirelli MF, Cool DE, Diltz CD, Krebs EG & Walsh KA (1990) Protein tyrosine phosphatases: a novel family of enzymes involved in transmembrane signalling. Adv Second Messenger Phosphoprotein Res 24, 273279.
  • 17
    Siligan C, Ban J, Bachmaier R, Spahn L, Kreppel M, Schaefer KL, Poremba C, Aryee DN & Kovar H (2005) EWS-FLI1 target genes recovered from Ewing's sarcoma chromatin. Oncogene 24, 25122524.
  • 18
    Gallouzi IE, Parker F, Chebli K, Maurier F, Labourier E, Barlat I, Capony JP, Tocque B & Tazi J (1998) A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 18, 39563965.
  • 19
    Wehner KA, Schutz S & Sarnow P (2010) OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol Cell Biol 30, 20062016.
  • 20
    Thomas MG, Loschi M, Desbats MA & Boccaccio GL (2011) RNA granules: the good, the bad and the ugly. Cell Signal 23, 323334.
  • 21
    Anderson P & Kedersha N (2006) RNA granules. J Cell Biol 172, 803808.
  • 22
    Tourriere H, Gallouzi IE, Chebli K, Capony JP, Mouaikel J, van der Geer P & Tazi J (2001) RasGAP-associated endoribonuclease G3BP: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 21, 77477760.
  • 23
    Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E & Tazi J (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160, 823831.
  • 24
    Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE & Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169, 871884.
  • 25
    Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D & Schrader JW (2007) Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol Cell Biol 27, 23242342.
  • 26
    Ivanov PA, Chudinova EM & Nadezhdina ES (2003) Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation. Exp Cell Res 290, 227233.
  • 27
    Kolobova E, Efimov A, Kaverina I, Rishi AK, Schrader JW, Ham AJ, Larocca MC & Goldenring JR (2009) Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules. Exp Cell Res 315, 542555.
  • 28
    Nadezhdina ES, Lomakin AJ, Shpilman AA, Chudinova EM & Ivanov PA (2010) Microtubules govern stress granule mobility and dynamics. Biochim Biophys Acta 1803, 361371.
  • 29
    Kedersha N, Tisdale S, Hickman T & Anderson P (2008) Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol 448, 521552.
  • 30
    Parker F, Maurier F, Delumeau I, Duchesne M, Faucher D, Debussche L, Dugue A, Schweighoffer F & Tocque B (1996) A Ras-GTPase-activating protein SH3-domain-binding protein. Mol Cell Biol 16, 25612569.
  • 31
    Sun H, Tonks NK & Bar-Sagi D (1994) Inhibition of Ras-induced DNA synthesis by expression of the phosphatase MKP-1. Science 266, 285288.
  • 32
    Niemi NM, Lanning NJ, Klomp JA, Tait SW, Xu Y, Dykema KJ, Murphy LO, Gaither LA, Xu HE, Furge KA et al. (2011) MK-STYX, a catalytically inactive phosphatase regulating mitochondrially dependent apoptosis. Mol Cell Biol 31, 13571368.