SEARCH

SEARCH BY CITATION

References

  • 1
    Aspinal GO (1959) Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 14, 429468.
  • 2
    Howard BH (1957) Hydrolysis of the soluble pentosans of wheat flour and Rhodymenia palmate by ruminal micro-organisms. Biochem J 67, 643651.
  • 3
    Coutinho PM & Henrissat B. Carbohydrate-active enzymes server at www.cazy.org.
  • 4
    Keen NT, Boyd C & Henrissat B (1996) Cloning and characterization of a xylanase from corn strains of Erwinia chrysanthemi. Mol Plant–Microbe Interact 9, 651657.
  • 5
    Suzuki T, Ibata K, Hatsu M, Takamizawa K & Kawai K (1997) Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J Ferment Bioeng 84, 8689.
  • 6
    Hurlbert JC & Preston JF (2001) Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J Bacteriol 183, 20932100.
  • 7
    St John FJ, Rice JD & Preston JF (2006) Characterization of XynC from Bacillus subtilis subsp subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol 188, 86178626.
  • 8
    Vršanská M, Kolenová K, Puchart V & Biely P (2007) Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J 274, 16661677.
  • 9
    Valenzuela SV, Diaz P & Pastor FIJ (2012) Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol 78, 39233931.
  • 10
    Luo HY, Yang J, Li J, Shi PJ, Huang HQ, Bai YG, Fan YL & Yao B (2010) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 86, 18291839.
  • 11
    St John FJ, Gonzales JM & Pozharski E (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. FEBS Lett 584, 44354441.
  • 12
    Collins T, Meuwis M-A, Stals I, Claeyssens M, Feller G & Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277, 3513335139.
  • 13
    Fushinobu S, Hidaka M, Honsa Y, Wakagi T, Shoun H & Kitaoka M (2005) Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125 . J Biol Chem 280, 1718017186.
  • 14
    Honda Y & Kitaoka M (2004) A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem 279, 5509755103.
  • 15
    Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CMGA & Gilbert HJ (2011) Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 286, 2251022520.
  • 16
    Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3, 286290.
  • 17
    Tenkanen M, Luonteri E & Teleman A (1996) Effect of side groups on the action of β-xylosidase from Trichoderma reesei against substituted xylo-oligosaccharides. FEBS Lett 399, 303306.
  • 18
    Herrmann MC, Vršanská M, Jurickova M, Hirsch J, Biely P & Kubicek CP (1997) The β-d-xylosidase of Trichoderma reesei is a multifunctional β-d-xylan xylohydrolase. Biochem J 321, 375381.
  • 19
    Margolles-Clark E, Tenkanen M, Nakari-Setälä T & Penttilä M (1996) Cloning of genes encoding α-l-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62, 38403846.
  • 20
    Ganju RK, Vithayathil PJ & Murthy SK (1989) Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile. Can J Microbiol 35, 836842.
  • 21
    Kubata BK, Suzuki T, Horitsu H, Kawai K & Takamizawa K (1994) Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produce exlusively xylobiose from xylan. Appl Environ Microbiol 60, 531535.
  • 22
    Kubata BK, Takamizawa K, Kawai K, Suzuki T & Horitsu H (1995) Xylanase IV, an exoxylanase of Aeromonas caviae ME-1 which produces xylotetraose as the only low-molecular-weight oligosaccharide from xylan. Appl Environ Microbiol 61, 16661668.
  • 23
    Usui K, Ibata K, Suzuki T & Kawai K (1999) XynX, a possible exo-xylanase of Aeromonas caviae ME-1 that produces exclusively xylobiose and xylotetraose from xylan. Biosci Biotechnol Biochem 63, 13461352.
  • 24
    Kubata BK, Suzuki T, Ito Y, Naito H, Kawai K, Takamizawa K & Horitsu H (1997) Cloning and expression of xylanase I gene (xynA) of Aeromonas caviae ME-1 in Escherichia coli. J Ferment Bioeng 83, 292295.
  • 25
    Biely P & Tenkanen M (1998) Enzymology of hemicellulose degradation. In Trichoderma and Gliocladium, Vol. 2 (Kubicek CP & Harrman GE, eds), pp. 2547. Taylor & Francis Ltd, London.
  • 26
    Tenkanen M, Puls J & Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14, 566574.
  • 27
    Törrönen A, Mach R, Messner R, Gonzales R, Harkki A, Kalkkinen N & Kubicek K (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology 10, 14611467.
  • 28
    Xu J, Takakuwa N, Nogawa M, Okada H & Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49, 718724.
  • 29
    Biely P, Vršanská M & Claeyssens M (1991) The endo-1,4-β-glucanase I from Trichoderma reesei. Action on β-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur J Biochem 200, 157163.
  • 30
    Biely P, Vršanská M, Kremnický L, Tenkanen M, Poutanen K & Hayn M (1993) Catalytic properties of endo-β-1,4-xylanases of Trichoderma reesei. In Proceedings of the TRICEL Symposium on Trichoderma reesei Cellulases and Other Hydrolases (Suominen P & Reinikainen T, eds), pp. 125135. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, Finland.
  • 31
    Tenkanen M, Siika-aho M, Saloheimo M, Vrsanska M & Biely P (2003) A novel exo-acting xylanase XYN IV from Trichoderma reesei Rut C30. In Recent Advances in Enzymes in Grain Processing (Courtin CM, Veraverbeke WS & Delcour JA, eds), pp. 4146. ACCO, Leuven, Belgium.
  • 32
    Tenkanen M & Siika-aho M (2000) An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 75, 149161.
  • 33
    Biely P, Mislovičová D & Toman R (1985) Soluble chromogenic substrates for the assay and detection of endo-1,4-β-xylanases and endo-1,4-β-glucanases. Anal Biochem 144, 142146.
  • 34
    Teleman A, Hausalo T, Tenkanen M & Vuorinen T (1996) Identification of the acidic degradation products of hexenuronic acid and characterization of hexenuronic acid-substituted xylo-oligosaccharides by NMR spectroscopy. Carbohydr Res 280, 197208.
  • 35
    De Vries RP, Poulsen CH, Madrid S & Visser J (1998) aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180, 243249.
  • 36
    Biely P, Hirsch J, la Grange DC, van Zyl WH & Prior BA (2000) A chromogenic substrate for a β-xylosidase-coupled assay of α-glucuronidase. Anal Biochem 286, 289294.
  • 37
    Ryabova O, Vršanská M, Kaneko S, van Zyl WH & Biely P (2009) Novel family of hemicellulolytic α-glucuronidase. FEBS Lett 583, 14571462.
  • 38
    Biely P, Vršanská M, Tenkanen M & Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57, 151166.
  • 39
    Vršanská M, Gorbacheva IV, Krátký Z & Biely P (1982) Reaction pathways of substrate degradation by an acidic endo-1,4-β-xylanase of Aspergillus niger. Biochim Biophys Acta 704, 114122.
  • 40
    Biely P, Vršanská M & Krátký Z (1981) Mechanism of substrate digestion by endo-1,4-β-xylanase of Cryptococcus albidus. Lysozyme-type of action. Eur J Biochem 119, 565571.
  • 41
    Suganuma T, Matsuno R, Ohnishi M & Hiromi K (1978) A study of the mechanism of action of Taka-amylase A on linear oligosaccharides by product analysis and computer simulation. J Biochem 84, 293316.
  • 42
    Urbaníková Ľ, Vršanská M, Mørkeberg Krough KBR, Hoff T & Biely P (2011) Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. FEBS J 278, 21052116.
  • 43
    St John FJ, Hurlbert JC, Rice JD, Preston JF & Pozharski E (2011) Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. J Mol Biol 407, 92109.
  • 44
    Margolles-Clark E, Ihnen M & Penttilä M (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57, 167179.
  • 45
    Xu J, Nogawa M, Okada H & Morikawa Y (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54, 370375.
  • 46
    Kolenová K, Vršanská M & Biely P (2005) Purification and characterization of two minor endo-β-1,4-xylanases of Schizophyllum commune. Enzyme Microb Technol 36, 903910.
  • 47
    Robyt JF & French D (1970) Action pattern of porcine pancreatic α-amylase in relation to the substrate binding site of the enzyme. J Biol Chem 245, 39173927.
  • 48
    Allen JD & Thoma JA (1978) Multimolecular substrate reactions catalyzed by carbohydrates. Aspergillus oryzae α-amylase degradation of maltooligosaccharides. Biochemistry 17, 23382344.
  • 49
    Nishitani K & Nevins DJ (1991) Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl residues. J Biol Chem 266, 65396543.
  • 50
    Gallardo O, Fernandez-Fernandez M, Valls C, Valenzuela SV, Roncero MB, Vidal T, Diaz P & Pastor FIJ (2010) Characterization of a family GH5 xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Appl Environ Microbiol 76, 62906294.
  • 51
    Larson SB, Day J, Barba de la Rosa AP, Keen NT & McPherson A (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implication for catalysis. Biochemistry 42, 84118422.
  • 52
    Dung NV, Kamio Y, Abe N, Kaneko J & Izaki K (1991) Purification and properties of β-1,4-xylanase from Aeromonas caviae W-61. Appl Environ Microbiol 57, 445449.
  • 53
    Dung NV, Vetayasuporn S, Kamio Y, Abe N, Kaneko J & Izaki K (1993) Purification and properties of β-1,4-xylanase 2 and 3 from Aeromonas caviae W-61. Biosci Biotechnol Biochem 57, 17081712.
  • 54
    Naran R, Black S, Decker SR & Azali P (2009) Extraction and characterization of native heteroxylans from delignified corn stover and aspen. Cellulose 16, 661675.
  • 55
    Van Dongen FEM, Van Eylen D & Kabel MAS (2011) Characterization of substituents in xylans from corn cobs and stover. Carbohydr Polym 86, 722731.
  • 56
    Chong SL, Nissila T, Ketola RA, Koutaniemi S, Derba-Maceluch M, Mellerowicz EJ, Tenkanen M & Tuomainen P (2011) Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana. Anal Bioanal Chem 401, 29953009.
  • 57
    Kováč P (1979) Synthesis of a series of positionally isomeric methyl O-(α-and β-d-xylopyranosyl)-β-d-xylopyranoside. Collect Czech Chem Commun 45, 892900.
  • 58
    Kováč P (1980) Alternative synthesis of methylated sugars. XXII. Synthesis of methyl β-d-xylotrioside. Chemical Papers 34, 234240.
  • 59
    Vršanská M, Nerinckx W, Claeyssens M & Biely P (2008) An alternative approach for the synthesis of fluorogenic substrates of endo-β-(1[RIGHTWARDS ARROW]4)-xylanases and some applications. Carbohydr Res 343, 541548.
  • 60
    Bailey MJ, Biely P & Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23, 257270.
  • 61
    Poutanen K & Rättö M (1988) Production of mannan-degrading enzymes. Biotechnol Lett 10, 661664.
  • 62
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • 63
    Lowry OH, Rosebrough NH, Parr AL & Randell RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193, 265275.
  • 64
    Paleg LG (1959) Citric acid interference in the estimation of reducing sugars with alkaline copper reagent. Anal Chem 31, 19021904.
  • 65
    Margolles-Clark E, Tenkanen M, Söderlund H & Penttilä M (1996) Acetyl xylan esterase from Trichoderma reesei contains an active site serine and a cellulose binding domain. Eur J Biochem 237, 553560.
  • 66
    Saloheimo A, Aro N, Ilmén M & Penttilä M (2000) Isolation of the ace1 gene encoding a Cys2–His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 275, 58175825.
  • 67
    Gietz D, St Jean A, Woods RA & Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.
  • 68
    Sherman F (1991) Getting started with yeast. Methods Enzymol 194, 321.
  • 69
    Penttilä M, Nevalainen H, Rättö M, Salminen E & Knowles JKC (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61, 155164.
  • 70
    Ilmén M, Saloheimo A, Onnela M-L & Penttilä M (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63, 12981306.
  • 71
    Chirgwin JM, Przybyla RJ, McDonald RJ & Rutter WJ (1979) Isolation of biological active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 18, 52945299.