• 1
    Tonks NK, Diltz CD & Fischer EH (1988) Purification of the major protein tyrosine phosphatases of human placenta. J Biol Chem 263, 67226730.
  • 2
    Tonks NK, Diltz CD & Fischer EH (1988) Characterization of the major protein tyrosine phosphatases of human placenta. J Biol Chem 263, 67316737.
  • 3
    Brautigan DL (2012) Protein Ser/ Thr phosphatases – the ugly ducklings of cell signalling. FEBS J. doi:10.1111/j.1742-4658.2012.08609.x.
  • 4
    Krebs EG (1992) Protein phosphorylation and cellular regulation I. Nobel Lect 7289.
  • 5
    Fischer EH (1992) Protein phosphorylation and cellular regulation II. Nobel Lect 95113.
  • 6
    Danforth WH, Helmreich E & Cori CF (1962) The effect of contraction and of epinephrine on the phosphorylase activity of frog sartorius muscle. PNAS 48, 11911199.
  • 7
    Lim WA & Pawson T (2010) Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142, 661667.
  • 8
    Sefton BM, Hunter T, Beemon K & Eckhart W (1980) Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20, 807816.
  • 9
    MacKintosh C, Garton AJ, McDonnell A, Barford D, Cohen PTW, Tonks NK & Cohen P (1996) Further evidence that inhibitor-2 acts like a chaperone to fold PP1 and its nature conformation. FEBS Lett 397, 235238.
  • 10
    Chernoff J, Li HC, Cheng YS & Chen LB (1983) Characterization of a phosphotyrosyl protein phosphatase activity associated with a phosphoseryl protein phosphatase of Mr = 95,000 from bovine heart. J Biol Chem 258, 78527857.
  • 11
    Pallen CJ, Valentine KA, Wang JH & Hollenberg MD (1985) Calcineurin-mediated dephosphorylation of the human placental membrane receptor for epidermal growth factor urogastrone. Biochemistry 24, 47274730.
  • 12
    Chan CP, Gallis B, Blumenthal DK, Pallen CJ, Wang JH & Krebs EG (1986) Characterization of the phosphotyrosyl protein phosphatase activity of calmodulin-dependent protein phosphatase. J Biol Chem 261, 98909895.
  • 13
    Lin MF & Clinton GM (1988) The epidermal growth factor receptor from prostate cells is dephosphorylated by a prostate-specific phosphotyrosyl phosphatase. Mol Cell Biol 8, 54775485.
  • 14
    Horlein D, Gallis B, Brautigan DL & Bornstein P (1982) Partial purification and characterization of phosphotyrosyl-protein phosphatase from Ehrlich ascites tumor cells. Biochemistry 21, 55775584.
  • 15
    Foulkes JG, Erikson E & Erikson RL (1983) Separation of multiple phosphotyrosyl-and phosphoseryl-protein phosphatases from chicken brain. J Biol Chem 258, 431438.
  • 16
    Nelson RL & Branton PE (1984) Identification, purification, and characterization of phosphotyrosine-specific protein phosphatases from cultured chicken embryo fibroblasts. Mol Cell Biol 4, 10031012.
  • 17
    Brunati AM & Pinna LA (1985) Isolation and partial characterization of distinct species of phosphotyrosyl protein phosphatases from rat spleen. Biochem Biophys Res Commun 133, 929936.
  • 18
    Swarup G, Cohen S & Garbers DL (1982) Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun 107, 11041109.
  • 19
    Brautigan DL, Bornstein P & Gallis B (1981) Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem 256, 65196522.
  • 20
    Shriner CL & Brautigan DL (1984) Cytosolic protein phosphotyrosine phosphatases from rabbit kidney. Purification of two distinct enzymes that bind to Zn2+-iminodiacetate agarose. J Biol Chem 259, 1138311390.
  • 21
    Rotenberg SA & Brautigan DL (1987) Membrane protein phosphotyrosine phosphatase in rabbit kidney. Proteolysis activates the enzyme and generates soluble catalytic fragments. Biochem J 243, 747754.
  • 22
    Okada M, Owada K & Nakagawa H (1986) [Phosphotyrosine]protein phosphatase in rat brain. A major [phosphotyrosine]protein phosphatase is a 23 kDa protein distinct from acid phosphatase. Biochem J 239, 155162.
  • 23
    Tung HY & Reed LJ (1987) Identification and purification of a cytosolic phosphotyrosyl protein phosphatase from bovine spleen. Anal Biochem 161, 412419.
  • 24
    Kohanski RA & Lane MD (1986) Kinetic evidence for activating and non-activating components of autophosphorylation of the insulin receptor protein kinase. Biochem Biophys Res Commun 134, 13121318.
  • 25
    Pike LJ, Eakes AT & Krebs EG (1986) Characterization of affinity-purified insulin receptor/kinase. Effects of dithiothreitol on receptor/kinase function. J Biol Chem 261, 37823789.
  • 26
    Tonks NK, Kearns A & Randle PJ (1982) Pig heart [35S]thiophosphoryl pyruvate dehydrogenase complexes. Eur J Biochem 122, 549551.
  • 27
    Tonks NK & Cohen P (1983) Calcineurin is a calcium ion-dependent, calmodulin-stimulated protein phosphatase. Biochim Biophys Acta 747, 191193.
  • 28
    Charbonneau H, Tonks NK, Kumar S, Diltz CD, Harrylock M, Cool DE, Krebs EG, Fischer EH & Walsh KA (1989) Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA 86, 52525256.
  • 29
    Charbonneau H, Tonks NK, Walsh KA & Fischer EH (1988) The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci USA 85, 71827186.
  • 30
    Trowbridge IS & Thomas ML (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 12, 85116.
  • 31
    Thomas ML, Barclay AN, Gagnon J & Williams AF (1985) Evidence from cDNA clones that the rat leukocyte-common antigen (T200) spans the lipid bilayer and contains a cytoplasmic domain of 80,000 Mr. Cell 41, 8393.
  • 32
    Ralph SJ, Thomas ML, Morton CC & Trowbridge IS (1987) Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J 6, 12511257.
  • 33
    Thomas ML, Reynolds PJ, Chain A, Ben-Neriah Y & Trowbridge IS (1987) B-cell variant of mouse T200 (Ly-5): evidence for alternative mRNA splicing. Proc Natl Acad Sci USA 84, 53605363.
  • 34
    Tonks NK, Charbonneau H, Diltz CD, Fischer EH & Walsh KA (1988) Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry 27, 86958701.
  • 35
    Tonks NK & Charbonneau H (1989) Protein tyrosine dephosphorylation and signal transduction. Trends Biochem Sci 14, 497500.
  • 36
    Fischer EH, Charbonneau H & Tonks NK (1991) Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253, 401406.
  • 37
    Pingel JT & Thomas ML (1989) Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58, 10551065.
  • 38
    Koretzky GA, Picus J, Thomas ML & Weiss A (1990) Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 6668.
  • 39
    Ostergaard HL, Shackelford DA, Hurley TR, Johnson P, Hyman R, Sefton BM & Trowbridge IS (1989) Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc Natl Acad Sci USA 86, 89598963.
  • 40
    Thomas ML & Brown EJ (1999) Positive and negative regulation of Src-family membrane kinases by CD45. Immunol Today 20, 406411.
  • 41
    Streuli M, Krueger NX, Hall LR, Schlossman SF & Saito H (1988) A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J Exp Med 168, 15231530.
  • 42
    Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK & Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21, 71177136.
  • 43
    Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK & Moller NP (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18, 830.
  • 44
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7, 833846.
  • 45
    Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J & Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117, 699711.
  • 46
    Patterson KI, Brummer T, O'Brien PM & Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418, 475489.
  • 47
    Moorhead GB, De Wever V, Templeton G & Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417, 401409.
  • 48
    Raugei G, Ramponi G & Chiarugi P (2002) Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 59, 941949.
  • 49
    Boutros R, Lobjois V & Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7, 495507.
  • 50
    Barford D, Flint AJ & Tonks NK (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 13971404.
  • 51
    Tonks NK (2003) PTP1B: from the sidelines to the front lines!. FEBS Lett 546, 140148.
  • 52
    Jia Z, Barford D, Flint AJ & Tonks NK (1995) Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 17541758.
  • 53
    Pannifer AD, Flint AJ, Tonks NK & Barford D (1998) Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J Biol Chem 273, 1045410462.
  • 54
    Barford D, Jia Z & Tonks NK (1995) Protein tyrosine phosphatases take off. Nat Struct Biol 2, 10431053.
  • 55
    Zheng J, Yates SP & Jia Z (2012) Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK. Philos Trans R Soc Lond B Biol Sci 367, 26562668.
  • 56
    Begley MJ & Dixon JE (2005) The structure and regulation of myotubularin phosphatases. Curr Opin Struct Biol 15, 614620.
  • 57
    Mohebiany AN, Nikolaienko RM, Bouyain S & Harroch S (2012) Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. FEBS J. doi:10.1111/j.1742-4658.2012.08653.x.
  • 58
    Brady-Kalnay SM, Flint AJ & Tonks NK (1993) Homophilic binding of PTP mu, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 122, 961972.
  • 59
    Brady-Kalnay SM & Tonks NK (1994) Identification of the homophilic binding site of the receptor protein tyrosine phosphatase PTP mu. J Biol Chem 269, 2847228477.
  • 60
    Sap J, Jiang YP, Friedlander D, Grumet M & Schlessinger J (1994) Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol Cell Biol 14, 19.
  • 61
    Brady-Kalnay SM, Rimm DL & Tonks NK (1995) Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J Cell Biol 130, 977986.
  • 62
    Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H, Brackenbury R, Rimm DL, Del Vecchio RL & Tonks NK (1998) Dynamic interaction of PTPmu with multiple cadherins in vivo. J Cell Biol 141, 287296.
  • 63
    Hermiston ML, Xu Z & Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21, 107137.
  • 64
    Xu Z & Weiss A (2002) Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol 3, 764771.
  • 65
    Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M & Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA 97, 26032608.
  • 66
    Pariser H, Perez-Pinera P, Ezquerra L, Herradon G & Deuel TF (2005) Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta. Biochem Biophys Res Commun 335, 232239.
  • 67
    Tamura H, Fukada M, Fujikawa A & Noda M (2006) Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci Lett 399, 3338.
  • 68
    Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL et al. (2006) The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49, 517531.
  • 69
    Streuli M, Krueger NX, Thai T, Tang M & Saito H (1990) Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J 9, 23992407.
  • 70
    Felberg J & Johnson P (1998) Characterization of recombinant CD45 cytoplasmic domain proteins. Evidence for intramolecular and intermolecular interactions. J Biol Chem 273, 1783917845.
  • 71
    Nam HJ, Poy F, Krueger NX, Saito H & Frederick CA (1999) Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449457.
  • 72
    Yang QT & Tonks NK (1993) Structural diversity within the protein tyrosine phosphatase family. In Adv Protein Phosphatases, pp. 359372. Leuven University Press, Leuven, Belgium.
  • 73
    Blanchetot C, Tertoolen LG, Overvoorde J & den Hertog J (2002) Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases. J Biol Chem 277, 4726347269.
  • 74
    Persson C, Sjoblom T, Groen A, Kappert K, Engstrom U, Hellman U, Heldin CH, den Hertog J & Ostman A (2004) Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci USA 101, 18861891.
  • 75
    Blanchetot C, Tertoolen LG & den Hertog J (2002) Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J 21, 493503.
  • 76
    van der Wijk T, Overvoorde J & den Hertog J (2004) H2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases. J Biol Chem 279, 4435544361.
  • 77
    Bilwes AM, den Hertog J, Hunter T & Noel JP (1996) Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 382, 555559.
  • 78
    Hoffmann KM, Tonks NK & Barford D (1997) The crystal structure of domain 1 of receptor protein-tyrosine phosphatase mu. J Biol Chem 272, 2750527508.
  • 79
    Nam HJ, Poy F, Saito H & Frederick CA (2005) Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med 201, 441452.
  • 80
    James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, Nilsson P, Sleep DL, Goncalves CM, Morgan SH et al. (2011) The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem 286, 3199332001.
  • 81
    Hermiston ML, Tan AL, Gupta VA, Majeti R & Weiss A (2005) The juxtamembrane wedge negatively regulates CD45 function in B cells. Immunity 23, 635647.
  • 82
    Guan KL, Haun RS, Watson SJ, Geahlen RL & Dixon JE (1990) Cloning and expression of a protein-tyrosine-phosphatase. Proc Natl Acad Sci USA 87, 15011505.
  • 83
    Chernoff J, Schievella AR, Jost CA, Erikson RL & Neel BG (1990) Cloning of a cDNA for a major human protein-tyrosine-phosphatase. Proc Natl Acad Sci USA 87, 27352739.
  • 84
    Brown-Shimer S, Johnson KA, Lawrence JB, Johnson C, Bruskin A, Green NR & Hill DE (1990) Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc Natl Acad Sci USA 87, 51485152.
  • 85
    Frangioni JV, Beahm PH, Shifrin V, Jost CA & Neel BG (1992) The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545560.
  • 86
    Cool DE, Tonks NK, Charbonneau H, Walsh KA, Fischer EH & Krebs EG (1989) cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family. Proc Natl Acad Sci USA 86, 52575261.
  • 87
    Lorenzen JA, Dadabay CY & Fischer EH (1995) COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. J Cell Biol 131, 631643.
  • 88
    Lam MH, Michell BJ, Fodero-Tavoletti MT, Kemp BE, Tonks NK & Tiganis T (2001) Cellular stress regulates the nucleocytoplasmic distribution of the protein-tyrosine phosphatase TCPTP. J Biol Chem 276, 3770037707.
  • 89
    Flint AJ, Gebbink MF, Franza BR Jr, Hill DE & Tonks NK (1993) Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO J 12, 19371946.
  • 90
    Frangioni JV, Oda A, Smith M, Salzman EW & Neel BG (1993) Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 12, 48434856.
  • 91
    Hao L, Tiganis T, Tonks NK & Charbonneau H (1997) The noncatalytic C-terminal segment of the T cell protein tyrosine phosphatase regulates activity via an intramolecular mechanism. J Biol Chem 272, 2932229329.
  • 92
    Neel BG, Gu H & Pao L (2003) The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28, 284293.
  • 93
    Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N et al. (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23, 281282.
  • 94
    Saito K, Tautz L & Mustelin T (2007) The lipid-binding SEC14 domain. Biochim Biophys Acta 1771, 719726.
  • 95
    Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G & Hurley JH (2005) Structural basis for endosomal targeting by the Bro1 domain. Dev Cell 8, 937947.
  • 96
    Mauro LJ & Dixon JE (1994) Zip codes’ direct intracellular protein tyrosine phosphatases to the correct cellular ‘address. Trends Biochem Sci 19, 151155.
  • 97
    Salmeen A, Andersen JN, Myers MP, Tonks NK & Barford D (2000) Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 6, 14011412.
  • 98
    Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien J-P, Salmeen A, Barford D & Tonks NK (2001) TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 276, 4777147774.
  • 99
    Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG et al. (2011) Substrate specificity of protein tyrosine phosphatases 1B, RPTPa, SHP-1, and SHP-2. Biochemistry 50, 23392356.
  • 100
    Pulido R, Zuniga A & Ullrich A (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J 17, 73377350.
  • 101
    Garton AJ, Burnham MR, Bouton AH & Tonks NK (1997) Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15, 877885.
  • 102
    O'Reilly AM, Pluskey S, Shoelson SE & Neel BG (2000) Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Mol Cell Biol 20, 299311.
  • 103
    Guan KL, Broyles SS & Dixon JE (1991) A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature 350, 359362.
  • 104
    Liu K, Lemon B & Traktman P (1995) The dual-specificity phosphatase encoded by vaccinia virus, VH1, is essential for viral transcription in vivo and in vitro. J Virol 69, 78237834.
  • 105
    Derrien M, Punjabi A, Khanna M, Grubisha O & Traktman P (1999) Tyrosine phosphorylation of A17 during vaccinia virus infection: involvement of the H1 phosphatase and the F10 kinase. J Virol 73, 72877296.
  • 106
    Najarro P, Traktman P & Lewis JA (2001) Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J Virol 75, 31853196.
  • 107
    Charles CH, Sun H, Lau LF & Tonks NK (1993) The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase. Proc Natl Acad Sci USA 90, 52925296.
  • 108
    Sun H, Charles CH, Lau LF & Tonks NK (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75, 487493.
  • 109
    Alessi DR, Smythe C & Keyse SM (1993) The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Oncogene 8, 20152020.
  • 110
    Chen H-H (2004) Characterization of the dual specificity phosphatases. PhD Thesis, Stony Brook University, Stony Brook, NY.
  • 111
    Caunt CJ & Keyse SM (2012) Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J. doi:10.1111/j.1742-4658.2012.08716.x.
  • 112
    Zhou B & Zhang ZY (1999) Mechanism of mitogen-activated protein kinase phosphatase-3 activation by ERK2. J Biol Chem 274, 3552635534.
  • 113
    Ishibashi T, Bottaro DP, Chan A, Miki T & Aaronson SA (1992) Expression cloning of a human dual-specificity phosphatase. Proc Natl Acad Sci USA 89, 1217012174.
  • 114
    Todd JL, Tanner KG & Denu JM (1999) Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem 274, 1327113280.
  • 115
    Kang TH & Kim KT (2006) Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat Cell Biol 8, 863869.
  • 116
    Schumacher MA, Todd JL, Rice AE, Tanner KG & Denu JM (2002) Structural basis for the recognition of a bisphosphorylated MAP kinase peptide by human VHR protein phosphatase. Biochemistry 41, 30093017.
  • 117
    Alonso A, Saxena M, Williams S & Mustelin T (2001) Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation. J Biol Chem 276, 47664771.
  • 118
    Todd JL, Rigas JD, Rafty LA & Denu JM (2002) Dual-specificity protein tyrosine phosphatase VHR down-regulates c-Jun N-terminal kinase (JNK). Oncogene 21, 25732583.
  • 119
    Rahmouni S, Cerignoli F, Alonso A, Tsutji T, Henkens R, Zhu C, Louis-dit-Sully C, Moutschen M, Jiang W & Mustelin T (2006) Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat Cell Biol 8, 524531.
  • 120
    Arnoldussen YJ, Lorenzo PI, Pretorius ME, Waehre H, Risberg B, Maelandsmo GM, Danielsen HE & Saatcioglu F (2008) The mitogen-activated protein kinase phosphatase vaccinia H1-related protein inhibits apoptosis in prostate cancer cells and is overexpressed in prostate cancer. Cancer Res 68, 92559264.
  • 121
    Shen Y, Luche R, Wei B, Gordon ML, Diltz CD & Tonks NK (2001) Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Proc Natl Acad Sci USA 98, 1361313618.
  • 122
    Chen AJ, Zhou G, Juan T, Colicos SM, Cannon JP, Cabriera-Hansen M, Meyer CF, Jurecic R, Copeland NG, Gilbert DJ et al. (2002) The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 277, 3659236601.
  • 123
    Alonso A, Merlo JJ, Na S, Kholod N, Jaroszewski L, Kharitonenkov A, Williams S, Godzik A, Posada JD & Mustelin T (2002) Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related to VH1 related (VHR). J Biol Chem 277, 55245528.
  • 124
    Aoyama K, Nagata M, Oshima K, Matsuda T & Aoki N (2001) Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain. J Biol Chem 276, 2757527583.
  • 125
    Schwertassek U, Buckley DA, Xu CF, Lindsay AJ, McCaffrey MW, Neubert TA & Tonks NK (2010) Myristoylation of the dual-specificity phosphatase c-JUN N-terminal kinase (JNK) stimulatory phosphatase 1 is necessary for its activation of JNK signaling and apoptosis. FEBS J 277, 24632473.
  • 126
    Huang TY, DerMardirossian C & Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18, 2631.
  • 127
    Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR & Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24, 473486.
  • 128
    Chen HH, Luche R, Wei B & Tonks NK (2004) Characterization of two distinct dual specificity phosphatases encoded in alternative open reading frames of a single gene located on human chromosome 10q22.2. J Biol Chem 279, 4140441413.
  • 129
    Gil J & Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7, 667677.
  • 130
    Katagiri C, Masuda K, Nomura M, Tanoue K, Fujita S, Yamashita Y, Katakura R, Shiiba K, Nomura E, Sato M et al. (2011) DUSP13B/TMDP inhibits stress-activated MAPKs and suppresses AP-1-dependent gene expression. Mol Cell Biochem 352, 155162.
  • 131
    Wishart MJ, Denu JM, Williams JA & Dixon JE (1995) A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem 270, 2678226785.
  • 132
    Wishart MJ & Dixon JE (2002) The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production. Proc Natl Acad Sci USA 99, 21122117.
  • 133
    Hinton SD, Myers MP, Roggero VR, Allison LA & Tonks NK (2010) The pseudophosphatase MK-STYX interacts with G3BP and decreases stress granule formation. Biochem J 427, 349357.
  • 134
    Salmena L, Carracedo A & Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133, 403414.
  • 135
    Hollander MC, Blumenthal GM & Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11, 289301.
  • 136
    Leslie NR & Foti M (2011) Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci 32, 131140.
  • 137
    Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH, Parsons R & Tonks NK (1997) P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 94, 90529057.
  • 138
    Maehama T & Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273, 1337513378.
  • 139
    Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P & Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323334.
  • 140
    Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP & Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95, 1351313518.
  • 141
    Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S & Hall A (2004) Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 303, 11791181.
  • 142
    Mahimainathan L & Choudhury GG (2004) Inactivation of platelet-derived growth factor receptor by the tumor suppressor PTEN provides a novel mechanism of action of the phosphatase. J Biol Chem 279, 1525815268.
  • 143
    Tamura M, Gu J, Takino T & Yamada KM (1999) Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 59, 442449.
  • 144
    Vazquez F, Ramaswamy S, Nakamura N & Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20, 50105018.
  • 145
    Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK & Pulido R (2003) Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem 278, 3065230660.
  • 146
    Odriozola L, Singh G, Hoang T & Chan AM (2007) Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem 282, 2330623315.
  • 147
    Zhang XC, Piccini A, Myers MP, Van Aelst L & Tonks NK (2012) Functional analysis of the protein phosphatase activity of PTEN. Biochem J 444, 457464.
  • 148
    Vanhaesebroeck B, Higashi K, Raven C, Welham M, Anderson S, Brennan P, Ward SG & Waterfield MD (1999) Autophosphorylation of p110delta phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo. EMBO J 18, 12921302.
  • 149
    Wurzenberger C & Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12, 469482.
  • 150
    Queralt E & Uhlmann F (2008) Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 20, 661668.
  • 151
    Amon A (2008) A decade of Cdc14 – a personal perspective. Delivered on 9 July 2007 at the 32nd FEBS Congress in Vienna, Austria. FEBS J 275, 57745784.
  • 152
    Mocciaro A & Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123, 28672876.
  • 153
    Gray CH, Good VM, Tonks NK & Barford D (2003) The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. EMBO J 22, 35243535.
  • 154
    Diamond RH, Cressman DE, Laz TM, Abrams CS & Taub R (1994) PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 14, 37523762.
  • 155
    Bessette DC, Qiu D & Pallen CJ (2008) PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev 27, 231252.
  • 156
    Rios P, Li X & Kohn M (2012) Molecular mechanisms of the PRL phosphatases. FEBS J. doi:10.1111/j.1742-4658.2012.08565.x.
  • 157
    Hengge AC, Denu JM & Dixon JE (1996) Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis. Biochemistry 35, 70847092.
  • 158
    McParland V, Varsano G, Li X, Thornton J, Baby J, Aravind A, Meyer C, Pavic K, Rios P & Kohn M (2011) The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides. Biochemistry 50, 75797590.
  • 159
    Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW et al. (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294, 13431346.
  • 160
    Wang H, Quah SY, Dong JM, Manser E, Tang JP & Zeng Q (2007) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res 67, 29222926.
  • 161
    Dong Y, Zhang L, Zhang S, Bai Y, Chen H, Sun X, Yong W, Li W, Colvin SC, Rhodes SJ et al. (2012) Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (phosphatase and tensin homologue deleted on chromosome 10) and activating Akt protein. J Biol Chem 287, 3217232179.
  • 162
    Peters CS, Liang X, Li S, Kannan S, Peng Y, Taub R & Diamond RH (2001) ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. J Biol Chem 276, 1371813726.
  • 163
    Song H, Hanlon N, Brown NR, Noble ME, Johnson LN & Barford D (2001) Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol Cell 7, 615626.
  • 164
    Chinami M, Yano Y, Yang X, Salahuddin S, Moriyama K, Shiroishi M, Turner H, Shirakawa T & Adra CN (2005) Binding of HTm4 to cyclin-dependent kinase (Cdk)-associated phosphatase (KAP). Cdk2.cyclin A complex enhances the phosphatase activity of KAP, dissociates cyclin A, and facilitates KAP dephosphorylation of Cdk2. J Biol Chem 280, 1723517242.
  • 165
    Yu Y, Jiang X, Schoch BS, Carroll RS, Black PM & Johnson MD (2007) Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res 67, 130138.
  • 166
    Merlot S, Meili R, Pagliarini DJ, Maehama T, Dixon JE & Firtel RA (2003) A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi. J Biol Chem 278, 3986639873.
  • 167
    Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ & Dixon JE (2005) Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19, 197207.
  • 168
    Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA, Engel JL, Heacock P, Nguyen OK, Wang JH et al. (2011) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13, 690700.
  • 169
    Tagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J, Zhao X, Minassian BA, Depaoli-Roach AA & Roach PJ (2008) Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J Biol Chem 283, 3381633825.
  • 170
    Worby CA, Gentry MS & Dixon JE (2006) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem 281, 3041230418.
  • 171
    Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado-Escueta AV, Minassian BA, Depaoli-Roach AA & Roach PJ (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci USA 104, 1926219266.
  • 172
    Gentry MS, Roma-Mateo C & Sanz P (2012) Laforin, a protein with many faces: glucan phosphatase, adapter protein, and others. FEBS J. doi:10.1111/j.1742-4658.2012.08549.x.
  • 173
    Tagliabracci VS, Heiss C, Karthik C, Contreras CJ, Glushka J, Ishihara M, Azadi P, Hurley TD, DePaoli-Roach AA & Roach PJ (2011) Phosphate incorporation during glycogen synthesis and Lafora disease. Cell Metab 13, 274282.
  • 174
    Roach PJ (2011) Are there errors in glycogen biosynthesis and is laforin a repair enzyme? FEBS Lett 585, 32163218.
  • 175
    Vergne I & Deretic V (2010) The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett 584, 13131318.
  • 176
    Mruk DD & Cheng CY (2011) The myotubularin family of lipid phosphatases in disease and in spermatogenesis. Biochem J 433, 253262.
  • 177
    Hnia K, Vaccari I, Bolino A & Laporte J (2012) Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol Med 18, 317327.
  • 178
    Begley MJ, Taylor GS, Brock MA, Ghosh P, Woods VL & Dixon JE (2006) Molecular basis for substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase. Proc Natl Acad Sci USA 103, 927932.
  • 179
    Robinson FL & Dixon JE (2005) The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B Charcot-Marie-Tooth disease. J Biol Chem 280, 3169931707.
  • 180
    Lavecchia A, Giovanni CD & Novellino E (2012) CDC25 phosphatase inhibitors: an update. Mini Rev Med Chem 12, 6273.
  • 181
    Zhang Y & Zhang M (2011) Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue. Biochem J 434, 435444.
  • 182
    Bennett MS, Guan Z, Laurberg M & Su XD (2001) Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci USA 98, 1357713582.
  • 183
    Zegers I, Martins JC, Willem R, Wyns L & Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8, 843847.
  • 184
    Li R, Haile JD & Kennelly PJ (2003) An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J Bacteriol 185, 67806789.
  • 185
    Guo X, Li Y, Peng K, Hu Y, Li C, Xia B & Jin C (2005) Solution structures and backbone dynamics of arsenate reductase from Bacillus subtilis: reversible conformational switch associated with arsenate reduction. J Biol Chem 280, 3960139608.
  • 186
    Zhang ZY, Maclean D, McNamara DJ, Sawyer TK & Dixon JE (1994) Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry 33, 22852290.
  • 187
    Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC & Zhang ZY (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci USA 94, 1342013425.
  • 188
    Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB et al. (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2, 489495.
  • 189
    Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP & Tremblay ML (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2, 497503.
  • 190
    Zhang ZY, Thieme-Sefler AM, Maclean D, McNamara DJ, Dobrusin EM, Sawyer TK & Dixon JE (1993) Substrate specificity of the protein tyrosine phosphatases. Proc Natl Acad Sci USA 90, 44464450.
  • 191
    Flint AJ, Tiganis T, Barford D & Tonks NK (1997) Development of ‘substrate-trapping’ mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 94, 16801685.
  • 192
    Blanchetot C, Chagnon M, Dube N, Halle M & Tremblay ML (2005) Substrate-trapping techniques in the identification of cellular PTP targets. Methods 35, 4453.
  • 193
    Meng TC, Buckley DA, Galic S, Tiganis T & Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279, 3771637725.
  • 194
    Haj FG, Verveer PJ, Squire A, Neel BG & Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295, 17081711.
  • 195
    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667670.
  • 196
    Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, Tonks NK & Meng TC (2008) Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J 275, 6988.
  • 197
    Meng TC, Fukada T & Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9, 387399.
  • 198
    Meng TC, Hsu SF & Tonks NK (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35, 2836.
  • 199
    Boivin B, Zhang S, Arbiser JL, Zhang ZY & Tonks NK (2008) A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc Natl Acad Sci USA 105, 99599964.
  • 200
    Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain JR, Jin LL, Harris IS, Mori J, Mak TW, Senis YA et al. (2011) Global proteomic assessment of the classical protein-tyrosine phosphatome and ‘Redoxome’. Cell 146, 826840.
  • 201
    Karisch R & Neel BG (2012) Methods to monitor classical protein-tyrosine phosphatase oxidation. FEBS J. doi:10.1111/j.1742-4658.2012.08626.x.
  • 202
    Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK & Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769773.
  • 203
    Haque A, Andersen JN, Salmeen A, Barford D & Tonks NK (2011) Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 147, 185198.
  • 204
    Guan KL & Dixon JE (1990) Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553556.
  • 205
    Bliska JB, Clemens JC, Dixon JE & Falkow S (1992) The Yersinia tyrosine phosphatase: specificity of a bacterial virulence determinant for phosphoproteins in the J774A.1 macrophage. J Exp Med 176, 16251630.
  • 206
    Julien SG, Dube N, Hardy S & Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11, 3549.
  • 207
    Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, Ptak J, Silliman N, Peters BA, van der Heijden MS et al. (2004) Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 11641166.
  • 208
    Solomon DA, Kim JS, Cronin JC, Sibenaller Z, Ryken T, Rosenberg SA, Ressom H, Jean W, Bigner D, Yan H et al. (2008) Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 68, 1030010306.
  • 209
    Ostman A, Hellberg C & Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6, 307320.
  • 210
    Pallen CJ (2003) Protein tyrosine phosphatase alpha (PTPalpha): a Src family kinase activator and mediator of multiple biological effects. Curr Top Med Chem 3, 821835.
  • 211
    Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC et al. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 15441548.
  • 212
    Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH et al. (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20, 54795489.
  • 213
    Julien SG, Dube N, Read M, Penney J, Paquet M, Han Y, Kennedy BP, Muller WJ & Tremblay ML (2007) Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat Genet 39, 338346.
  • 214
    Bentires-Alj M & Neel BG (2007) Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res 67, 24202424.
  • 215
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J & Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2, 561566.
  • 216
    Hynes NE & Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5, 341354.
  • 217
    He R, Zeng LF, He Y, Zhang S & Zhang ZY (2012) Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J. doi:10.1111/j.1742-4658.2012.08718.x.
  • 218
    Shen K, Keng YF, Wu L, Guo XL, Lawrence DS & Zhang ZY (2001) Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. J Biol Chem 276, 4731147319.
  • 219
    Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, Xie N, Wilcox D, Jacobson P, Frost L et al. (2002) PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci USA 99, 1135711362.
  • 220
    Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M et al. (2004) Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11, 730737.
  • 221
    Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F et al. (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463, 501506.
  • 222
    Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM et al. (2009) RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res 69, 68396847.
  • 223
    Thompson KM, Uetani N, Manitt C, Elchebly M, Tremblay ML & Kennedy TE (2003) Receptor protein tyrosine phosphatase sigma inhibits axonal regeneration and the rate of axon extension. Mol Cell Neurosci 23, 681692.
  • 224
    Lin G, Aranda V, Muthuswamy SK & Tonks NK (2011) Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the ‘PTP-ome’. Genes Dev 25, 14121425.
  • 225
    Hendriks WJ, Elson A, Harroch S, Pulido R, Stoker A & den Hertog J (2012) Protein tyrosine phosphatases in health and disease. FEBS J. doi:10.1111/febs.12000.
  • 226
    Seifried A, Schultz J & Gohla A (2012) Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J. doi:10.1111/j.1742-4658.2012.08633.x.
  • 227
    Pouyssegur J, Volmat V & Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64, 755763.