SEARCH

SEARCH BY CITATION

References

  • 1
    Woese CR & Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74, 50885090.
  • 2
    Verhees CH, Kengen SWM, Tuininga JE, Schut GJ, Adams MWW, De Vos WM & Van Der Oost J (2004) Erratum: The unique features of glycolytic pathways in Archaea (Biochemical Journal (2003) 375 (231–246)). Biochem J 377, 819822.
  • 3
    Siebers B & Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8, 695705.
  • 4
    Sato T & Atomi H (2011) Novel metabolic pathways in Archaea. Curr Opin Microbiol 14, 307314.
  • 5
    Zillig W, Stetter KO & Wunderl S (1980) The Sulfolobus-'Caldariella' group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125, 259269.
  • 6
    De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E & Buonocore V (1984) Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 224, 407414.
  • 7
    Lamble HJ, Heyer NI, Bull SD, Hough DW & Danson MJ (2003) Metabolic pathway promiscuity in the Archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J Biol Chem 278, 3406634072.
  • 8
    Ahmed H, Ettema TJG, Tjaden B, Geerling ACM, Van Der Oost J & Siebers B (2005) The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390, 529540.
  • 9
    Haferkamp P, Kutschki S, Treichel J, Hemeda H, Sewczyk K, Hoffmann D, Zaparty M & Siebers B (2011) An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation? Biochem Soc Trans 39, 7781.
  • 10
    Lamble HJ, Milburn CC, Taylor GL, Hough DW & Danson MJ (2004) Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett 576, 133136.
  • 11
    Kim S & Lee SB (2005) Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner–Doudoroff pathway. Biochem J 387, 271280.
  • 12
    Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW & Danson MJ (2005) Promiscuity in the part-phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579, 68656869.
  • 13
    Ettema TJG, Ahmed H, Geerling ACM, Van Der Oost J & Siebers B (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12, 7588.
  • 14
    Potters MB, Solow BT, Bischoff KM, Graham DE, Lower BH, Helm R & Kennelly PJ (2003) Phosphoprotein with phosphoglycerate mutase activity from the archaeon Sulfolobus solfataricus. J Bacteriol 185, 21122121.
  • 15
    Kardinahl S, Schmidt CL, Hansen T, Anemüller S, Petersen A & Schäfer G (1999) The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme – an aldehyde oxidoreductase. Eur J Biochem 260, 540548.
  • 16
    Kehrer D, Ahmed H, Brinkmann H & Siebers B (2007) Glycerate kinase of the hyperthermophilic archaeon Thermoproteus tenax: new insights into the phylogenetic distribution and physiological role of members of the three different glycerate kinase classes. BMC Genomics 8, 301.
  • 17
    Reher M, Bott M & Schönheit P (2006) Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner–Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol Lett 259, 113119.
  • 18
    Noh M, Jung JH & Lee SB (2006) Purification and characterization of glycerate kinase from the thermoacidophilic archaeon Thermoplasma acidophilum: an enzyme belonging to the second glycerate kinase family. Biotechnol Bioprocess Engineer 11, 344350.
  • 19
    Liu B, Hong Y, Wu L, Li Z, Ni J, Sheng D & Shen Y (2007) A unique highly thermostable 2-phosphoglycerate forming glycerate kinase from the hyperthermophilic archaeon Pyrococcus horikoshii: gene cloning, expression and characterization. Extremophiles 11, 733739.
  • 20
    Liu B, Wu L, Liu T, Hong Y, Shen Y & Ni J (2009) A MOFRL family glycerate kinase from the thermophilic crenarchaeon, Sulfolobus tokodaii, with unique enzymatic properties. Biotechnol Lett 31, 19371941.
  • 21
    Yang C, Rodionov DA, Rodionova IA, Li X & Osterman AL (2008) Glycerate 2-kinase of Thermotoga maritima and genomic reconstruction of related metabolic pathways. J Bacteriol 190, 17731782.
  • 22
    Potter JA, Kerou M, Lamble HJ, Bull SD, Hough DW, Danson MJ & Taylor GL (2008) The structure of Sulfolobus solfataricus 2-keto-3-deoxygluconate kinase. Acta Crystallogr Biol Crystallogr 64, 12831287.
  • 23
    Wagner M, Berkner S, Ajon M, Driessen AJM, Lipps G & Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans 37, 97101.
  • 24
    Albers SV & Driessen AJM (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2, 145149.
  • 25
    Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M & Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic Archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186, 427437.
  • 26
    Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P et al. (2009) ‘Hot standards’ for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 14, 119142.
  • 27
    Nishimasu H, Fushinobu S, Shoun H & Wakagi T (2006) Identification and characterization of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Bacteriol 188, 20142019.
  • 28
    Nishimasu H, Fushinobu S, Shoun H & Wakagi T (2007) Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Biol Chem 282, 99239931.
  • 29
    Ahmed H, Tjaden B, Hensel R & Siebers B (2004) Embden–Meyerhof–Parnas and Entner–Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? Biochem Soc Trans 32, 303304.
  • 30
    Schwarzenbacher R, McMullan D, Krishna SS, Xu Q, Miller MD, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L et al. (2006) Crystal structure of a glycerate kinase (TM1585) from Thermotoga maritima at 2.70 Å resolution reveals a new fold. Proteins Struct Funct Genet 65, 243248.
  • 31
    Albers SV, Szabo Z & Driessen AJM (2003) Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol 185, 39183925.
  • 32
    Brock TD, Brock KM, Belly RT & Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv Mikrobiol 84, 5468.
  • 33
    Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K & Schomburg D (2009) MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal Chem 81, 34293439.
  • 34
    Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T & Sakai Y (2006) The Ribulose Monophosphate Pathway Substitutes for the Missing Pentose Phosphate Pathway in the Archaeon Thermococcus kodakaraensis. J Bacteriol 188, 46984704.
  • 35
    Zaparty M & Siebers B (2010) Physiology, Metabolism and Enzymology of Thermoacidophiles. In Extremophiles Handbook (Horikoshi K, Antranikian G, Bull AT, Robb FT & Stetter KO, eds), pp. 602–639. Springer, Tokyo.