• 1
    Lambert MP & Neuhaus FC (1972) Mechanism of d-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110, 978987.
  • 2
    Neuhaus FC & Lynch JL (1964) The enzymatic synthesis of d-alanyl-d-alanine. 3. On the inhibition of d-alanyl-d-alanine synthetase by the antibiotic d-cycloserine. Biochemistry 3, 471480.
  • 3
    Neuhaus FC (1962) The enzymatic synthesis of d-alanyl-d-alanine. I. Purification and properties of d-alanyl-d-alanine synthetase. J Biol Chem 237, 778786.
  • 4
    Wood WA & Gunsalus IC (1951) d-Alanine formation; a racemase in Streptococcus faecalis. J Biol Chem 190, 403416.
  • 5
    Caminero JA, Sotgiu G, Zumla A & Migliori GB (2010) Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis 10, 621629.
  • 6
    Yew WW, Wong CF, Wong PC, Lee J & Chau CH (1993) Adverse neurological reactions in patients with multidrug-resistant pulmonary tuberculosis after coadministration of cycloserine and ofloxacin. Clin Infect Dis 17, 288289.
  • 7
    Arbex MA, Varella MC, Siqueira HR & Mello FA (2010) Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 2: second line drugs. J Bras Pneumol 36, 641656.
  • 8
    Sassetti CM, Boyd DH & Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 7784.
  • 9
    Sassetti CM & Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100, 1298912994.
  • 10
    Milligan DL, Tran SL, Strych U, Cook GM & Krause KL (2007) The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of d-alanine. J Bacteriol 189, 83818386.
  • 11
    Awasthy D, Bharath S, Subbulakshmi V & Sharma U (2012) Alanine racemase mutants of Mycobacterium tuberculosis require d-alanine for growth and are defective for survival in macrophages and mice. Microbiology 158, 319327.
  • 12
    Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V & Barletta RG (1997) Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis. J Bacteriol 179, 50465055.
  • 13
    Feng Z & Barletta RG (2003) Roles of Mycobacterium smegmatis d-alanine:d-alanine ligase and d-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor d-cycloserine. Antimicrob Agents Chemother 47, 283291.
  • 14
    Halouska S, Chacon O, Fenton RJ, Zinniel DK, Barletta RG & Powers R (2007) Use of NMR metabolomics to analyze the targets of d-cycloserine in mycobacteria: role of d-alanine racemase. J Proteome Res 6, 46084614.
  • 15
    Fenn TD, Holyoak T, Stamper GF & Ringe D (2005) Effect of a Y265F mutant on the transamination-based cycloserine inactivation of alanine racemase. Biochemistry 44, 53175327.
  • 16
    Priyadarshi A, Lee EH, Sung MW, Nam KH, Lee WH, Kim EE & Hwang KY (2009) Structural insights into the alanine racemase from Enterococcus faecalis. Biochim Biophys Acta 1794, 10301040.
  • 17
    Fenn TD, Stamper GF, Morollo AA & Ringe D (2003) A side reaction of alanine racemase: transamination of cycloserine. Biochemistry 42, 57755783.
  • 18
    Kim MG, Strych U, Krause K, Benedik M & Kohn H (2003) N(2)-substituted d, l-cycloserine derivatives: synthesis and evaluation as alanine racemase inhibitors. J Antibiot (Tokyo) 56, 160168.
  • 19
    Anthony KG, Strych U, Yeung KR, Shoen CS, Perez O, Krause KL, Cynamon MH, Aristoff PA & Koski RA (2011) New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One 6, e20374.
  • 20
    Ciustea M, Mootien S, Rosato AE, Perez O, Cirillo P, Yeung KR, Ledizet M, Cynamon MH, Aristoff PA, Koski RA et al. (2012) Thiadiazolidinones: a new class of alanine racemase inhibitors with antimicrobial activity against methicillin-resistant Staphylococcus aureus. Biochem Pharmacol 83, 368377.
  • 21
    Mustata GI & Briggs JM (2002) A structure-based design approach for the identification of novel inhibitors: application to an alanine racemase. J Comput Aided Mol Des 16, 935953.
  • 22
    Bugg TD, Dutka-Malen S, Arthur M, Courvalin P & Walsh CT (1991) Identification of vancomycin resistance protein VanA as a d-alanine:d-alanine ligase of altered substrate specificity. Biochemistry 30, 20172021.
  • 23
    Zawadzke LE, Bugg TD & Walsh CT (1991) Existence of two d-alanine:d-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry 30, 16731682.
  • 24
    Liu S, Chang JS, Herberg JT, Horng MM, Tomich PK, Lin AH & Marotti KR (2006) Allosteric inhibition of Staphylococcus aureus d-alanine:d-alanine ligase revealed by crystallographic studies. Proc Natl Acad Sci USA 103, 1517815183.
  • 25
    Noda M, Kawahara Y, Ichikawa A, Matoba Y, Matsuo H, Lee DG, Kumagai T & Sugiyama M (2004) Self-protection mechanism in d-cycloserine-producing Streptomyces lavendulae. Gene cloning, characterization, and kinetics of its alanine racemase and d-alanyl-d-alanine ligase, which are target enzymes of d-cycloserine. J Biol Chem 279, 4614346152.
  • 26
    Fan C, Moews PC, Walsh CT & Knox JR (1994) Vancomycin resistance: structure of d-alanine:d-alanine ligase at 2.3 Å resolution. Science 266, 439443.
  • 27
    Fan C, Park IS, Walsh CT & Knox JR (1997) d-alanine:d-alanine ligase: phosphonate and phosphinate intermediates with wild type and the Y216F mutant. Biochemistry 36, 25312538.
  • 28
    Kitamura Y, Ebihara A, Agari Y, Shinkai A, Hirotsu K & Kuramitsu S (2009) Structure of d-alanine-d-alanine ligase from Thermus thermophilus HB8: cumulative conformational change and enzyme–ligand interactions. Acta Crystallogr D Biol Crystallogr 65, 10981106.
  • 29
    Bruning JB, Murillo AC, Chacon O, Barletta RG & Sacchettini JC (2011) Structure of the Mycobacterium tuberculosis d-alanine:d-alanine ligase, a target of the antituberculosis drug d-cycloserine. Antimicrob Agents Chemother 55, 291301.
  • 30
    Lee JH, Na Y, Song HE, Kim D, Park BH, Rho SH, Im YJ, Kim MK, Kang GB, Lee DS et al. (2006) Crystal structure of the apo form of d-alanine:d-alanine ligase (Ddl) from Thermus caldophilus: a basis for the substrate-induced conformational changes. Proteins 64, 10781082.
  • 31
    Wu D, Zhang L, Kong Y, Du J, Chen S, Chen J, Ding J, Jiang H & Shen X (2008) Enzymatic characterization and crystal structure analysis of the d-alanine-d-alanine ligase from Helicobacter pylori. Proteins 72, 11481160.
  • 32
    David HL, Takayama K & Goldman DS (1969) Susceptibility of mycobacterial d-alanyl-d-alanine synthetase to d-cycloserine. Am Rev Respir Dis 100, 579581.
  • 33
    Strominger JL, Ito E & Threnn RH (1960) Competitive inhibition of enzymatic reactions by oxamycin. J Am Chem Soc 82, 998999.
  • 34
    Neuhaus FC (1962) The enzymatic synthesis of d-alanyl-d-alanine. II. Kinetic studies on d-alanyl-d-alanine synthetase. J Biol Chem 237, 31283135.
  • 35
    Park IS & Walsh CT (1997) d-Alanyl-d-lactate and d-alanyl-d-alanine synthesis by d-alanyl-d-alanine ligase from vancomycin-resistant Leuconostoc mesenteroides. Effects of a phenylalanine 261 to tyrosine mutation. J Biol Chem 272, 92109214.
  • 36
    Daub E, Zawadzke LE, Botstein D & Walsh CT (1988) Isolation, cloning, and sequencing of the Salmonella typhimurium ddlA gene with purification and characterization of its product, d-alanine:d-alanine ligase (ADP forming). Biochemistry 27, 37013708.
  • 37
    Park IS, Lin CH & Walsh CT (1997) Bacterial resistance to vancomycin: overproduction, purification, and characterization of VanC2 from Enterococcus casseliflavus as a d-Ala-d-Ser ligase. Proc Natl Acad Sci USA 94, 1004010044.
  • 38
    Follmann M, Becker M, Ochrombel I, Ott V, Kramer R & Marin K (2009) Potassium transport in Corynebacterium glutamicum is facilitated by the putative channel protein CglK, which is essential for pH homeostasis and growth at acidic pH. J Bacteriol 191, 29442952.
  • 39
    Mullins LS, Zawadzke LE, Walsh CT & Raushel FM (1990) Kinetic evidence for the formation of d-alanyl phosphate in the mechanism of d-alanyl-d-alanine ligase. J Biol Chem 265, 89938998.
  • 40
    Fan C, Moews PC, Shi Y, Walsh CT & Knox JR (1995) A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and d-alanine:d-alanine ligase of Escherichia coli. Proc Natl Acad Sci USA 92, 11721176.
  • 41
    Park IS, Lin CH & Walsh CT (1996) Gain of d-alanyl-d-lactate or d-lactyl-d-alanine synthetase activities in three active-site mutants of the Escherichia coli d-alanyl-d-alanine ligase B. Biochemistry 35, 1046410471.
  • 42
    Shi Y & Walsh CT (1995) Active site mapping of Escherichia coli d-Ala-d-Ala ligase by structure-based mutagenesis. Biochemistry 34, 27682776.
  • 43
    Carlson HA, Briggs JM & McCammon JA (1999) Calculation of the pKa values for the ligands and side chains of Escherichia coli d-alanine:d-alanine ligase. J Med Chem 42, 109117.
  • 44
    Lessard IA, Healy VL, Park IS & Walsh CT (1999) Determinants for differential effects on d-Ala-d-lactate vs d-Ala-d-Ala formation by the VanA ligase from vancomycin-resistant enterococci. Biochemistry 38, 1400614022.
  • 45
    Healy VL, Mullins LS, Li X, Hall SE, Raushel FM & Walsh CT (2000) d-Ala-d-X ligases: evaluation of d-alanyl phosphate intermediate by MIX, PIX and rapid quench studies. Chem Biol 7, 505514.
  • 46
    Tian J, Bryk R, Itoh M, Suematsu M & Nathan C (2005) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of α-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102, 1067010675.
  • 47
    Chacon O, Bermudez LE, Zinniel DK, Chahal HK, Fenton RJ, Feng Z, Hanford K, Adams LG & Barletta RG (2009) Impairment of d-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. Microbiology 155, 14401450.
  • 48
    McBain CJ, Kleckner NW, Wyrick S & Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-d-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36, 556565.
  • 49
    Fersht A (1999) Structure and Mechanism in Protein Science, 3rd edn. W.H. Freeman, New York, p. 206.