• 1
    Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2, 907916.
  • 2
    Bogdan C, Rollinghoff M & Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12, 6476.
  • 3
    Cals-Grierson MM & Ormerod AD (2004) Nitric oxide function in the skin. Nitric Oxide 10, 179193.
  • 4
    Vareille M, Kieninger E, Edwards MR & Regamey N (2011) The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 24, 210229.
  • 5
    Sharma JN, Al-Omran A & Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15, 252259.
  • 6
    Lechner M, Lirk P & Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15, 277289.
  • 7
    Galli SJ, Borregaard N & Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12, 10351044.
  • 8
    MacMicking J, Xie QW & Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15, 323350.
  • 9
    Ostrand-Rosenberg S & Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182, 44994506.
  • 10
    Ishii KJ, Koyama S, Nakagawa A, Coban C & Akira S (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352363.
  • 11
    Witte A, Wanner G, Blasi U, Halfmann G, Szostak M & Lubitz W (1990) Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. J Bacteriol 172, 41094114.
  • 12
    Witte A, Wanner G, Sulzner M & Lubitz W (1992) Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol 157, 381388.
  • 13
    Witte A & Lubitz W (1989) Biochemical characterization of phi X174-protein-E-mediated lysis of Escherichia coli. Eur J Biochem 180, 393398.
  • 14
    Witte A, Wanner G, Lubitz W & Holtje JV (1998) Effect of phi X174 protein E-mediated lysis on murein composition of Escherichia coli. FEMS Microbiol Lett 164, 149157.
  • 15
    Riedmann EM, Kyd JM, Cripps AW & Lubitz W (2007) Bacterial ghosts as adjuvant particles. Expert Rev Vaccines 6, 241253.
  • 16
    Kudela P, Koller VJ & Lubitz W (2010) Bacterial ghosts (BGs) – advanced antigen and drug delivery system. Vaccine 28, 57605767.
  • 17
    Muhammad A, Champeimont J, Mayr UB, Lubitz W & Kudela P (2012) Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines 11, 97116.
  • 18
    Lubitz P, Mayr UB & Lubitz W (2009) Applications of bacterial ghosts in biomedicine. Adv Exp Med Biol 655, 159170.
  • 19
    Felnerova D, Kudela P, Bizik J, Haslberger A, Hensel A, Saalmuller A & Lubitz W (2004) T cell-specific immune response induced by bacterial ghosts. Med Sci Monit 10, BR362-70.
  • 20
    Haslberger AG, Kohl G, Felnerova D, Mayr UB, Furst-Ladani S & Lubitz W (2000) Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J Biotechnol 83, 5766.
  • 21
    Kudela P, Paukner S, Mayr UB, Cholujova D, Schwarczova Z, Sedlak J, Bizik J & Lubitz W (2005) Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J Immunother 28, 136143.
  • 22
    Paukner S, Kudela P, Kohl G, Schlapp T, Friedrichs S & Lubitz W (2005) DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol Ther 11, 215223.
  • 23
    Ebensen T, Paukner S, Link C, Kudela P, de Domenico C, Lubitz W & Guzman CA (2004) Bacterial ghosts are an efficient delivery system for DNA vaccines. J Immunol 172, 68586865.
  • 24
    Saiko P, Szakmary A, Jaeger W & Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658, 6894.
  • 25
    Gupta SC, Kannappan R, Reuter S, Kim JH & Aggarwal BB (2011) Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 1215, 150160.
  • 26
    Shukla Y & Singh R (2011) Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci 1215, 18.
  • 27
    Vang O, Ahmad N, Baile CA, Baur JA, Brown K, Csiszar A, Das DK, Delmas D, Gottfried C, Lin HY et al. (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6, e19881.
  • 28
    Chan MM (2002) Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol 63, 99104.
  • 29
    Baur JA & Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discovery 5, 493506.
  • 30
    Delmas D, Aires V, Limagne E, Dutartre P, Mazue F, Ghiringhelli F & Latruffe N (2011) Transport, stability, and biological activity of resveratrol. Ann N Y Acad Sci 1215, 4859.
  • 31
    Panaro MA, Carofiglio V, Acquafredda A, Cavallo P & Cianciulli A (2012) Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-kappaB activation in Caco-2 and SW480 human colon cancer cells. Br J Nutr 108, 16231632.
  • 32
    Tsai SH, Lin-Shiau SY & Lin JK (1999) Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol 126, 673680.
  • 33
    Mader HJ, Szostak MP, Hensel A, Lubitz W & Haslberger AG (1997) Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine 15, 195202.
  • 34
    Hurley JC (1995) Endotoxemia: methods of detection and clinical correlates. Clin Microbiol Rev 8, 268292.
  • 35
    Zhang H, Niesel DW, Peterson JW & Klimpel GR (1998) Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. Infect Immun 66, 51965201.
  • 36
    Leeson MC & Morrison DC (1994) Induction of proinflammatory responses in human monocytes by particulate and soluble forms of lipopolysaccharide. Shock 2, 235245.
  • 37
    Kim YA, Kim GY, Park KY & Choi YH (2007) Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. J Med Food 10, 218224.
  • 38
    Sebai H, Sani M, Ghanem-Boughanmi N & Aouani E (2010) Prevention of lipopolysaccharide-induced mouse lethality by resveratrol. Food Chem Toxicol 48, 15431549.
  • 39
    Bogdan C, Rollinghoff M & Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173, 1726.
  • 40
    Chakravortty D & Hensel M (2003) Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5, 621627.
  • 41
    El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, Basaraba RJ, Konig T, Schleicher U, Koo MS et al. (2008) Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9, 13991406.
  • 42
    Kusmartsev S & Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174, 48804891.
  • 43
    Gabrilovich DI, Ostrand-Rosenberg S & Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253268.
  • 44
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942949.
  • 45
    De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M et al. (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102, 41854190.
  • 46
    Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V & Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203, 26912702.
  • 47
    Fox JT, Sakamuru S, Huang R, Teneva N, Simmons SO, Xia M, Tice RR, Austin CP & Myung K (2012) High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proc Natl Acad Sci USA 109, 54235428.
  • 48
    Gatouillat G, Balasse E, Joseph-Pietras D, Morjani H & Madoulet C (2010) Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma. J Cell Biochem 110, 893902.
  • 49
    Niles RM, McFarland M, Weimer MB, Redkar A, Fu YM & Meadows GG (2003) Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett 190, 157163.
  • 50
    Soto BL, Hank JA, Darjatmoko SR, Polans AS, Yanke EM, Rakhmilevich AL, Seo S, Kim K, Reisfeld RA, Gillies SD et al. (2011) Anti-tumor and immunomodulatory activity of resveratrol in vitro and its potential for combining with cancer immunotherapy. Int Immunopharmacol 11, 18771886.
  • 51
    Chan JY, Phoo MS, Clement MV, Pervaiz S & Lee SC (2008) Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: the roles of caspase-6 and p53. Cancer Biol Ther 7, 13051312.
  • 52
    Paukner S, Kohl G, Jalava K & Lubitz W (2003) Sealed bacterial ghosts – novel targeting vehicles for advanced drug delivery of water-soluble substances. J Drug Target 11, 151161.
  • 53
    Paukner S, Kohl G & Lubitz W (2004) Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J Control Release 94, 6374.
  • 54
    Lin HY, Lansing L, Merillon JM, Davis FB, Tang HY, Shih A, Vitrac X, Krisa S, Keating T, Cao HJ et al. (2006) Integrin alphaVbeta3 contains a receptor site for resveratrol. FASEB J 20, 17421744.
  • 55
    Cottart CH, Nivet-Antoine V, Laguillier-Morizot C & Beaudeux JL (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54, 716.
  • 56
    Santos AC, Veiga F & Ribeiro AJ (2011) New delivery systems to improve the bioavailability of resveratrol. Expert Opin Drug Deliv 8, 973990.
  • 57
    Hope C, Planutis K, Planutiene M, Moyer MP, Johal KS, Woo J, Santoso C, Hanson JA & Holcombe RF (2008) Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 52 (Suppl 1), S52S61.
  • 58
    Radkar V, Lau-Cam C, Hardej D & Billack B (2008) The role of surface receptor stimulation on the cytotoxicity of resveratrol to macrophages. Food Chem Toxicol 46, 36643670.
  • 59
    Vanamala J, Reddivari L, Radhakrishnan S & Tarver C (2010) Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10, 238.
  • 60
    Delmas D & Lin HY (2011) Role of membrane dynamics processes and exogenous molecules in cellular resveratrol uptake: consequences in bioavailability and activities. Mol Nutr Food Res 55, 11421153.
  • 61
    Kudela P, Paukner S, Mayr UB, Cholujova D, Kohl G, Schwarczova Z, Bizik J, Sedlak J & Lubitz W (2008) Effective gene transfer to melanoma cells using bacterial ghosts. Cancer Lett 262, 5463.
  • 62
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS & Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126, 131138.
  • 63
    Repetto G, del Peso A & Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3, 11251131.