SEARCH

SEARCH BY CITATION

References

  • 1
    Fiorenza MT, Mukhopadhyay M & Westphal H (2001) Expression screening for Lhx3 downstream genes identifies Thg-1pit as a novel mouse gene involved in pituitary development. Gene 278, 125130.
  • 2
    Gupta RA, Sarraf P, Brockman JA, Shappell SB, Raftery LA, Willson TM & DuBois RN (2003) Peroxisome proliferator-activated receptor γ and transforming growth factor-β pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22. J Biol Chem 278, 74317438.
  • 3
    Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU & Han TH (2005) Tsc-22 enhances TGF-β signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem 271, 2328.
  • 4
    Hino S, Kawamata H, Uchida D, Omotehara F, Miwa Y, Begum NM, Yoshida H, Fujimori T & Sato M (2000) Nuclear translocation of TSC-22 (TGF-β-stimulated clone-22) concomitant with apoptosis: TSC-22 as a putative transcriptional regulator. Biochem Biophys Res Commun 278, 659664.
  • 5
    Yu J, Ershler M, Yu L, Wei M, Hackanson B, Yokohama A, Mitsui T, Liu C, Mao H, Liu S et al. (2009) TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood 113, 55585567.
  • 6
    Homig-Holzel C, van Doorn R, Vogel C, Germann M, Cecchini MG, Verdegaal E & Peeper DS (2011) Antagonistic TSC22D1 variants control BRAF(E600)-induced senescence. EMBO J 30, 17531765.
  • 7
    Nakamura M, Kitaura J, Enomoto Y, Lu Y, Nishimura K, Isobe M, Ozaki K, Romeno Y, Nahakara F, Oki T et al. (2012) Transforming growth factor-β-stimulated clone-22 is a negative-feedback regulator of Ras/Raf signaling: implications for tumorigenesis. Cancer Sci 103, 2633.
  • 8
    Yoon CH, Rho SB, Kim ST, Kho S, Park J, Jang IS, Woo S, Kim SS, Lee JH & Lee SH (2012) Crucial role of TSC-22 in preventing the proteasomal degradation of p53 in cervical cancer. PLoS ONE 7, e42006.
  • 9
    Treisman JE, Lai ZC & Rubin GM (1995) shortsighted acts in the decapentaplegic pathway in Drosophila eye development and has homology to a mouse TGF-β-responsive gene. Development 121, 28352845.
  • 10
    Canterini S, Mangia F & Fiorenza MT (2005) Thg-1pit gene expression in granule cells of the developing mouse brain and in their synaptic targets, mature Purkinje, and mitral cells. Dev Dyn 234, 689697.
  • 11
    Gluderer S, Oldham S, Rintelen F, Sulzer A, Schutt C, Wu X, Raftery LA, Hafen E & Stocker H (2008) Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth. BMC Dev Biol 8, 10.
  • 12
    Fiol DF, Mak SK & Kultz D (2007) Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. FEBS J 274, 109124.
  • 13
    Shibanuba M, Kuroki T & Nose K (1992) Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor β1 and other growth factors. J Biol Chem 267, 1021910224.
  • 14
    Huser CA, Pringle MA, Heath VJ, Bell AK, Kendrick H, Smalley MJ, Crighton D, Ryan KM, Gusterson BA & Stein T (2010) TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ 17, 304315.
  • 15
    Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F & Fiorenza MT (2012) Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. Cerebellum 11, 2840.
  • 16
    Canterini S, Bosco A, De Matteis V, Mangia F & Fiorenza MT (2009) THG-1pit moves to nucleus at the onset of cerebellar granule neurons apoptosis. Mol Cell Neurosci 40, 249257.
  • 17
    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I et al. (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9, e1000582.
  • 18
    Kester HA, Blanchetot C, den Hertog J, van der Saag PT & van der Burg B (1999) Transforming growth factor-β-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem 274, 2743927447.
  • 19
    Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE et al. (2006) A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801814.
  • 20
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441446.
  • 21
    Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N & Kroemer G (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476, 118123.
  • 22
    Zachara NE & Hart GW (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem Rev 102, 431438.
  • 23
    Roquemore EP, Chou TY & Hart GW (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol 230, 443460.
  • 24
    Liu F, Iqbal K, Grundke-Iqbal I, Hart GW & Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci USA 101, 1080410809.
  • 25
    Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, Torp R, Torgner IA, Ottersen OP, Dawson TM et al. (2005) Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14, 20632073.
  • 26
    Yu SW, Wang Y, Frydenlund DS, Ottersen OP, Dawson VL & Dawson TM (2009) Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. ASN Neuro 1, 276281.
  • 27
    Rentsch CA, Cecchini MG, Schwaninger R, Germann M, Markwalder R, Heller M, van der Pluijm G, Thalmann GN & Wetterwald A (2006) Differential expression of TGFβ-stimulated clone 22 in normal prostate and prostate cancer. Int J Cancer 118, 899906.
  • 28
    Wells L, Vosseller K & Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 23762378.
  • 29
    Otera H, Ohsakaya S, Nagaura Z, Ishihara N & Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24, 13751386.
  • 30
    Norberg E, Orrenius S & Zhivotovsky B (2010) Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396, 95100.
  • 31
    Wechsler-Reya RJ & Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103114.
  • 32
    Bohinski RJ, Di Lauro R & Whitsett JA (1994) The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol 14, 56715681.
  • 33
    Reyes JC, Muchardt C & Yaniv M (1997) Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J Cell Biol 137, 263274.
  • 34
    Frezza C, Cipolat S & Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2, 287295.