SEARCH

SEARCH BY CITATION

References

  • 1
    Buck M, Gallegos MT, Studholme DJ, Guo Y & Gralla JD (2000) The bacterial enhancer-dependent σ54N) transcription factor. J Bacteriol 182, 41294136.
  • 2
    Lonetto M, Gribskov M & Gross CA (1992) The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 174, 38433849.
  • 3
    Gruber TM & Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441466.
  • 4
    Paget MS & Helmann JD (2003) The σ70 family of sigma factors. Genome Biol 4, 203.
  • 5
    Francke C, Groot KT, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R & Siezen RJ (2011) Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 12, 385.
  • 6
    Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K et al. (2008) Modus operandi of the bacterial RNA polymerase containing the σ54 promoter-specificity factor. Mol Microbiol 68, 538546.
  • 7
    Joly N, Zhang N, Buck M & Zhang XD (2012) Coupling AAA protein function to regulated gene expression. Biochim Biophys Acta 1823, 108116.
  • 8
    Chaney M, Grande R, Wigneshweraraj SR, Cannon W, Casaz P, Gallegos MT, Schumacher J, Jones S, Elderkin S, Dago AE et al. (2001) Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes Dev 15, 22822294.
  • 9
    Bordes P, Wigneshweraraj SR, Schumacher J, Zhang X, Chaney M & Buck M (2003) The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds σ54. Proc Natl Acad Sci USA 100, 22782283.
  • 10
    Bose D, Joly N, Pape T, Rappas M, Schumacher J, Buck M & Zhang X (2008) Dissecting the ATP hydrolysis pathway of bacterial enhancer-binding proteins. Biochem Soc Trans 36, 8388.
  • 11
    Bose D, Pape T, Burrows PC, Rappas M, Wigneshweraraj SR, Buck M & Zhang X (2008) Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 32, 337346.
  • 12
    Wigneshweraraj SR, Casaz P & Buck M (2002) Correlating protein footprinting with mutational analysis in the bacterial transcription factor σ54N). Nucleic Acids Res 30, 10161028.
  • 13
    Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X & Buck M (2005) The second paradigm for activation of transcription. Prog Nucleic Acid Res Mol Biol 79, 339369.
  • 14
    Doucleff M, Malak LT, Pelton JG & Wemmer DE (2005) The C–terminal RpoN domain of σ54 forms an unpredicted helix-turn-helix motif similar to domains of σ70. J Biol Chem 280, 4153041536.
  • 15
    Doucleff M, Pelton JG, Lee PS, Nixon BT & Wemmer DE (2007) Structural basis of DNA recognition by the alternative sigma-factor, σ54. J Mol Biol 369, 10701078.
  • 16
    Boucher JC, Schurr MJ & Deretic V (2000) Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol Microbiol 36, 341351.
  • 17
    Leang C, Krushkal J, Ueki T, Puljic M, Sun J, Juarez K, Nunez C, Reguera G, DiDonato R, Postier B et al. (2009) Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genomics 10, 331.
  • 18
    Popham D, Keener J & Kustu S (1991) Purification of the alternative σ factor, σ54, from Salmonella typhimurium and characterization of σ54-holoenzyme. J Biol Chem 266, 1951019518.
  • 19
    Scott DJ, Ferguson AL, Gallegos MT, Pitt M, Buck M & Hoggett JG (2000) Interaction of sigma factor σN with Escherichia coli RNA polymerase core enzyme. Biochem J 352, 539547.
  • 20
    Regenhardt D, Heuer H, Heim S, Fernandez DU, Strompl C, Moore ER & Timmis KN (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4, 912915.
  • 21
    Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26, 597604.
  • 22
    Li B & Fields S (1993) Identification of mutations in p53 that affect its binding to SV40 large T–antigen by using the yeast two-hybrid system. FASEB J 7, 957963.
  • 23
    Iwabuchi K, Li B, Bartel P & Fields S (1993) Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8, 16931696.
  • 24
    Chen BS, Sun ZW & Hampsey M (2001) A Gal4–σ54 hybrid protein that functions as a potent activator of RNA polymerase II transcription in yeast. J Biol Chem 276, 2388123887.
  • 25
    Ghosh T, Bose D & Zhang X (2010) Mechanisms for activating bacterial RNA polymerase. FEMS Microbiol Rev 34, 611627.
  • 26
    Rappas M, Schumacher J, Beuron F, Niwa H, Bordes P, Wigneshweraraj S, Keetch CA, Robinson CV, Buck M & Zhang X (2005) Structural insights into the activity of enhancer-binding proteins. Science 307, 19721975.
  • 27
    Cases I, de Lorenzo V & Perez-Martin J (1996) Involvement of σ54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter. Mol Microbiol 19, 717.
  • 28
    Mooney RA, Darst SA & Landick R (2005) Sigma and RNA polymerase: an on-again, off-again relationship? Mol Cell 20, 335345.
  • 29
    Friedman LJ & Gelles J (2012) Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 148, 679689.
  • 30
    dos Santos VAPM, Heim S, Moore ERB, Stratz M & Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6, 12641286.
  • 31
    Silby MW, Winstanley C, Godfrey SA, Levy SB & Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35, 652680.
  • 32
    Nakazawa T (2002) Travels of a Pseudomonas, from Japan around the world. Environ Microbiol 4, 782786.
  • 33
    Greated A, Lambertsen L, Williams PA & Thomas CM (2002) Complete sequence of the IncP–9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4, 856871.
  • 34
    Sambrook J & Russell JW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • 35
    Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959964.
  • 36
    Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF et al. (1997) The complete genome sequence of Escherichia coli K–12. Science 277, 14531462.
  • 37
    Vidal-Aroca F, Giannattasio M, Brunelli E, Vezzoli A, Plevani P, Muzi-Falconi M & Bertoni G (2006) One-step high-throughput assay for quantitative detection of β–galactosidase activity in intact gram-negative bacteria, yeast, and mammalian cells. Biotechniques 40, 433440.