SEARCH

SEARCH BY CITATION

References

  • 1
    Jaeken J, Detheux M, van Maldergem L, Frijns JP, Alliet P, Foulon M, Carchon H & van Schaftingen E (1996) 3-Phosphoglycerate dehydrogenase deficiency and 3-phosphoserine phosphatase deficiency: inborn errors of serine biosynthesis. J Inherit Metab Dis 19, 223226.
  • 2
    Klomp LWJ, de Koning TJ, Malingre HEM, van Beurden EACM, Brink M, Opdam FL, Duran M, Jaeken J, Pineda M, van Maldergem L et al. (2000) Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency – a neurometabolic disorder associated with reduced l-serine biosynthesis. Am J Hum Genet 67, 13891399.
  • 3
    Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y & Watanabe M (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21, 76917704.
  • 4
    Takasaki C, Miura E & Watanabe M (2007) Segmental and complementary expression of l-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase and neutral amino acid transporter ASCT1 in the mouse kidney. Biomed Res 28, 6169.
  • 5
    Hirabayashi Y & Furuya S (2008) Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival. Prog Lipid Res 47, 188203.
  • 6
    Kalhan SC & Hanson RW (2012) Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem 287, 1978619791.
  • 7
    Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814, 15581566.
  • 8
    Yoshida K, Furuya S, Osuka S, Mitoma J, Shinoda Y, Watanabe M, Azuma N, Tanaka H, Hashikawa T, Itohara S et al. (2004) Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279, 35733577.
  • 9
    Tabatabaie L, Klomp LW, Berger R & de Koning TJ (2010) l-Serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99, 256262.
  • 10
    Yang JH, Wada A, Yoshida K, Miyoshi Y, Sayano T, Esaki K, Kinoshita MO, Tomonaga S, Azuma N, Watanabe M et al. (2010) Brain-specific Phgdh deletion reveals a pivotal role for l-serine biosynthesis in controlling the level of d-serine, an N-methyl-d-aspartate receptor co-agonist, in adult brain. J Biol Chem 285, 4138041390.
  • 11
    Furuya S, Yoshida K, Kawakami Y, Yang JH, Sayano T, Azuma N, Tanaka H, Kuhara S & Hirabayashi Y (2008) Inactivation of the 3-phosphoglycerate dehydrogenase gene in mice: changes in gene expression and associated regulatory networks resulting from serine deficiency. Funct Integr Genomics 8, 235249.
  • 12
    Kawakami Y, Yoshida K, Yang JH, Suzuki T, Azuma N, Sakai K, Hashikawa T, Watanabe M, Yasuda K, Kuhara S et al. (2009) Impaired neurogenesis in embryonic spinal cord of Phgdh knockout mice, a serine deficiency disorder model. Neurosci Res 63, 184193.
  • 13
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619633.
  • 14
    Yamaguchi S, Ishihara H, Yamada T, Tamura A, Usui M, Tominaga R, Munakata Y, Satake C, Katagiri H, Tashiro F et al. (2008) ATF4-mediated induction of 4E-BP1 contributes to pancreatic β cell survival under endoplasmic reticulum stress. Cell Metab 7, 269276.
  • 15
    Wek RC, Jiang HY & Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34, 711.
  • 16
    Sonenberg N & Gingras AC (1998) The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10, 268275.
  • 17
    Richter JD & Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477480.
  • 18
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA & Lawrence JC Jr (1995) cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA 92, 72227226.
  • 19
    Malatesta P, Hartfuss E & Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 52535263.
  • 20
    Miyata T, Kawaguchi A, Okano H & Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727741.
  • 21
    Tamamaki N, Nakamura K, Okamoto K & Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41, 5160.
  • 22
    Balvay L, Lopez Lastra M, Sargueil B, Darlix JL & Ohlmann T (2007) Translational control of retroviruses. Nat Rev Microbiol 5, 128140.
  • 23
    Marcotrigiano J, Gingras AC, Sonenberg N & Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3, 707716.
  • 24
    Song Y & Lu B (2011) Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila. Genes Dev 25, 26442658.
  • 25
    Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G & Gridley T (1994) Notch1 is essential for postimplantation development in mice. Genes Dev 8, 707719.
  • 26
    Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT & Liao JK (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111, 18261832.
  • 27
    Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24, 24372447.
  • 28
    Yoon K & Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8, 709715.
  • 29
    Furuya S (2008) An essential role for de novo biosynthesis of l-serine in CNS development. Asia Pac J Clin Nutr 17, 307310.
  • 30
    Novoa I, Zeng H, Harding HP & Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153, 10111021.
  • 31
    Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR & Wek RC (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24, 13651377.
  • 32
    Averous J, Bruhat A, Jousse C, Carraro V, Thiel G & Fafournoux P (2004) Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 279, 52885297.
  • 33
    Deval C, Chaveroux C, Maurin AC, Cherasse Y, Parry L, Carraro V, Milenkovic D, Ferrara M, Bruhat A, Jousse C et al. (2009) Amino acid limitation regulates the expression of genes involved in several specific biological processes through GCN2-dependent and GCN2-independent pathways. FEBS J 276, 707718.
  • 34
    Buttgereit F & Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312, 163167.
  • 35
    Fumagalli S & Thomas G (2000) S6 phosphorylation and signal transduction. In Translational Control of Gene Expression (Sonenberg N, Hershey J & Mathews M, eds), pp. 695717. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • 36
    Sonenberg N & Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731745.
  • 37
    Lynch M, Fitzgerald C, Johnston KA, Wang S & Schmidt EV (2004) Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 279, 33273339.
  • 38
    Smith MR, Jaramillo M, Liu YL, Dever TE, Merrick WC, Kung HF & Sonenberg N (1990) Translation initiation factors induce DNA synthesis and transform NIH 3T3 cells. New Biol 2, 648654.
  • 39
    Lazaris-Karatzas A, Montine KS & Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544547.
  • 40
    De Benedetti A, Joshi-Barve S, Rinker-Schaeffer C & Rhoads RE (1991) Expression of antisense RNA against initiation factor eIF-4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF-4E and the p220 component of eIF-4F. Mol Cell Biol 11, 54355445.
  • 41
    Endo Y, Fu Z, Abe K, Arai S & Kato H (2002) Dietary protein quantity and quality affect rat hepatic gene expression. J Nutr 132, 36323637.
  • 42
    Leong HX, Simkevich C, Lesieur-Brooks A, Lau BW, Fugere C, Sabo E & Thompson NL (2006) Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis. Nutr Metab (Lond) 3, 37.
  • 43
    Palii SS, Kays CE, Deval C, Bruhat A, Fafournoux P & Kilberg MS (2009) Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. Amino Acids 37, 7988.
  • 44
    Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403, 217234.
  • 45
    Kimball SR & Jefferson LS (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83, 500S507S.
  • 46
    Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C & Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273, 1448414494.
  • 47
    Khandjian EW, Huot ME, Tremblay S, Davidovic L, Mazroui R & Bardoni B (2004) Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc Natl Acad Sci USA 101, 1335713362.