• 1
    Poirier Y, Antonenkov VD, Glumoff T & Hiltunen JK (2006) Peroxisomal beta-oxidation – a metabolic pathway with multiple functions. Biochim Biophys Acta 1763, 14131426.
  • 2
    Kiema TR, Taskinen JP, Pirila PL, Koivuranta KT, Wierenga RK & Hiltunen JK (2002) Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity. Biochem J 367, 433441.
  • 3
    Holden HM, Benning MM, Haller T & Gerlt JA (2001) The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. Acc Chem Res 34, 145157.
  • 4
    Hamed RB, Batchelar ET, Clifton IJ & Schofield CJ (2008) Mechanisms and structures of crotonase superfamily enzymes – how nature controls enolate and oxyanion reactivity. Cell Mol Life Sci 65, 25072527.
  • 5
    Barycki JJ, O'Brien LK, Strauss AW & Banaszak LJ (2000) Sequestration of the active site by interdomain shifting. Crystallographic and spectroscopic evidence for distinct conformations of L-3-hydroxyacyl-CoA dehydrogenase. J Biol Chem 275, 2718627196.
  • 6
    Taskinen JP, Kiema TR, Hiltunen JK & Wierenga RK (2006) Structural studies of MFE-1: the 1.9 A crystal structure of the dehydrogenase part of rat peroxisomal MFE-1. J Mol Biol 355, 734746.
  • 7
    Taskinen JP, Kiema TR, Koivuranta KT, Wierenga RK & Hiltunen JK (2002) Crystallization and characterization of the dehydrogenase domain from rat peroxisomal multifunctional enzyme type 1. Acta Crystallogr D Biol Crystallogr 58, 690693.
  • 8
    Kasaragod P, Venkatesan R, Kiema TR, Hiltunen JK & Wierenga RK (2010) Crystal structure of liganded rat peroxisomal multifunctional enzyme type 1: a flexible molecule with two interconnected active sites. J Biol Chem 285, 2408924098.
  • 9
    Haataja TJ, Koski MK, Hiltunen JK & Glumoff T (2011) Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics. Biochem J 435, 771781.
  • 10
    Fould B, Garlatti V, Neumann E, Fenel D, Gaboriaud C & Arlaud GJ (2010) Structural and functional characterization of the recombinant human mitochondrial trifunctional protein. Biochemistry 49, 86088617.
  • 11
    He XY & Yang SY (1997) Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. Biochemistry 36, 1104411049.
  • 12
    Yang S, He X & Schulz H (1995) Glutamate 139 of the large alpha-subunit is the catalytic base in the dehydration of both D- and L-3-hydroxyacyl-coenzyme A but not in the isomerization of Delta3, Delta2-enoyl-coenzyme A Catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. Biochemistry 34, 64416447.
  • 13
    Hiltunen JK, Palosaari PM & Kunau WH (1989) Epimerization of 3-hydroxyacyl-CoA esters in rat liver. Involvement of two 2-enoyl-CoA hydratases. J Biol Chem 264, 1353613540.
  • 14
    Ferdinandusse S, Denis S, Van Roermund CW, Wanders RJ & Dacremont G (2004) Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res 45, 11041111.
  • 15
    Nguyen SD, Baes M & Van Veldhoven PP (2008) Degradation of very long chain dicarboxylic polyunsaturated fatty acids in mouse hepatocytes, a peroxisomal process. Biochim Biophys Acta 1781, 400405.
  • 16
    Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK & Wanders RJ (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53, 12961303.
  • 17
    Kurosawa T, Sato M, Nakano H, Fujiwara M, Murai T, Yoshimura T & Hashimoto T (2001) Conjugation reactions catalyzed by bifunctional proteins related to beta-oxidation in bile acid biosynthesis. Steroids 66, 107114.
  • 18
    Cuebas DA, Phillips C, Schmitz W, Conzelmann E & Novikov DK (2002) The role of alpha-methylacyl-CoA racemase in bile acid synthesis. Biochem J 363, 801807.
  • 19
    Savolainen K, Kotti TJ, Schmitz W, Savolainen TI, Sormunen RT, Ilves M, Vainio SJ, Conzelmann E & Hiltunen JK (2004) A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 13, 955965.
  • 20
    Partanen ST, Novikov DK, Popov AN, Mursula AM, Hiltunen JK & Wierenga RK (2004) The 1.3 A crystal structure of human mitochondrial Delta3-Delta2-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group. J Mol Biol 342, 11971208.
  • 21
    Hubbard PA, Yu W, Schulz H & Kim JJ (2005) Domain swapping in the low-similarity isomerase/hydratase superfamily: the crystal structure of rat mitochondrial Delta3, Delta2-enoyl-CoA isomerase. Protein Sci 14, 15451555.
  • 22
    Mursula AM, Hiltunen JK & Wierenga RK (2004) Structural studies on delta(3)-delta(2)-enoyl-CoA isomerase: the variable mode of assembly of the trimeric disks of the crotonase superfamily. FEBS Lett 557, 8187.
  • 23
    Engel CK, Mathieu M, Zeelen JP, Hiltunen JK & Wierenga RK (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15, 51355145.
  • 24
    Palosaari PM & Hiltunen JK (1990) Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase & delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem 265, 24462449.
  • 25
    Kiema TR, Engel CK, Schmitz W, Filppula SA, Wierenga RK & Hiltunen JK (1999) Mutagenic and enzymological studies of the hydratase and isomerase activities of 2-enoyl-CoA hydratase-1. Biochemistry 38, 29912999.
  • 26
    Yang SY & Elzinga M (1993) Association of both enoyl coenzyme A hydratase and 3-hydroxyacyl coenzyme A epimerase with an active site in the amino-terminal domain of the multifunctional fatty acid oxidation protein from Escherichia coli. J Biol Chem 268, 65886592.
  • 27
    Goepfert S, Vidoudez C, Tellgren-Roth C, Delessert S, Hiltunen JK & Poirier Y (2008) Peroxisomal Delta(3), Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes. Plant J 56, 728742.
  • 28
    Zhang D, Yu W, Geisbrecht BV, Gould SJ, Sprecher H & Schulz H (2002) Functional characterization of Delta3, Delta2-enoyl-CoA isomerases from rat liver. J Biol Chem 277, 91279132.
  • 29
    Gurvitz A, Mursula AM, Firzinger A, Hamilton B, Kilpelainen SH, Hartig A, Ruis H, Hiltunen JK & Rottensteiner H (1998) Peroxisomal Delta3-cis-Delta2-trans-enoyl-CoA isomerase encoded by ECI1 is required for growth of the yeast Saccharomyces cerevisiae on unsaturated fatty acids. J Biol Chem 273, 3136631374.
  • 30
    Bell AF, Feng Y, Hofstein HA, Parikh S, Wu J, Rudolph MJ, Kisker C, Whitty A & Tonge PJ (2002) Stereoselectivity of enoyl-CoA hydratase results from preferential activation of one of two bound substrate conformers. Chem Biol 9, 12471255.
  • 31
    Bahnson BJ, Anderson VE & Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41, 26212629.
  • 32
    Pihko P, Rapakko S & Wierenga RK (2009) Oxyanion holes and their mimics. In Hydrogen Bonding in Organic Synthesis (Pihko P, ed.), pp. 4371. Wiley-VCH Verlag, Weinheim, Germany.
  • 33
    Papai I, Hamza A, Pihko PM & Wierenga RK (2011) Stereoelectronic requirements for optimal hydrogen-bond-catalyzed enolization. Chemistry 17, 28592866.
  • 34
    Hamed RB, Gomez-Castellanos JR, Thalhammer A, Harding D, Ducho C, Claridge TD & Schofield CJ (2011) Stereoselective C-C bond formation catalysed by engineered carboxymethylproline synthases. Nat Chem 3, 365371.
  • 35
    He XY, Yang SY & Schulz H (1992) Inhibition of enoyl-CoA hydratase by long-chain L-3-hydroxyacyl-CoA and its possible effect on fatty acid oxidation. Arch Biochem Biophys 298, 527531.
  • 36
    Barycki JJ, O'Brien LK, Strauss AW & Banaszak LJ (2001) Glutamate 170 of human l-3-hydroxyacyl-CoA dehydrogenase is required for proper orientation of the catalytic histidine and structural integrity of the enzyme. J Biol Chem 276, 3671836726.
  • 37
    Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ & Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27, 3564.
  • 38
    Engel CK, Kiema TR, Hiltunen JK & Wierenga RK (1998) The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol 275, 847859.
  • 39
    Ishikawa M, Tsuchiya D, Oyama T, Tsunaka Y & Morikawa K (2004) Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. EMBO J 23, 27452754.
  • 40
    Feng Y, Hofstein HA, Zwahlen J & Tonge PJ (2002) Effect of mutagenesis on the stereochemistry of enoyl-CoA hydratase. Biochemistry 41, 1288312890.
  • 41
    Zhang H, Machutta CA & Tonge PJ (2010) Fatty acid biosynthesis and oxidation. In Comprehensive Natural Products II (Mander L & Liu H-W, eds), pp. 231275. Elsevier, Oxford.
  • 42
    Qin YM, Haapalainen AM, Conry D, Cuebas DA, Hiltunen JK & Novikov DK (1997) Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis. Biochem J 328, 377382.
  • 43
    Tsuchida S, Kawamoto K, Nunome K, Hamaue N, Yoshimura T, Aoki T & Kurosawa T (2011) Analysis of enoyl-coenzyme A hydratase activity and its stereospecificity using high-performance liquid chromatography equipped with chiral separation column. J Oleo Sci 60, 221228.
  • 44
    Bell AF, Wu J, Feng Y & Tonge PJ (2001) Involvement of glycine 141 in substrate activation by enoyl-CoA hydratase. Biochemistry 40, 17251733.
  • 45
    D'Ordine RL, Pawlak J, Bahnson BJ & Anderson VE (2002) Polarization of cinnamoyl-CoA substrates bound to enoyl-CoA hydratase: correlation of (13)C NMR with quantum mechanical calculations and calculation of electronic strain energy. Biochemistry 41, 26302640.
  • 46
    Mohrig JR, Moerke KA, Cloutier DL, Lane BD, Person EC & Onasch TB (1995) Importance of historical contingency in the stereochemistry of hydratase-dehydratase enzymes. Science 269, 527529.
  • 47
    Corey EJ & Sneen RA (1956) Stereoelectronic control in enolization-ketonization reactions. J Am Chem Soc 78, 62696278.
  • 48
    Ho SN, Hunt HD, Horton RM, Pullen JK & Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 5159.
  • 49
    Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66, 125132.
  • 50
    Leslie AGW (1992) Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography 26.
  • 51
    Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62, 7282.
  • 52
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235242.
  • 53
    Murshudov GN, Vagin AA & Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240255.
  • 54
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 21262132.
  • 55
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J & Richardson JS et al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35, W375W383.
  • 56
    Krissinel E & Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 22562268.
  • 57
    Schrodinger L (2010) The PyMOL Molecular Graphics System, Version